Skip to main content

Analog electronic system for simulating biological neurons

  • Artificial Neural Nets Simulation and Implementation
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1607))

Abstract

This paper deals with the implementation of an analog electronic system capable of emulating and/or characterizing the electrical activity of biological neurons. We detail the main characteristics and performances of the system, and point out its litheness as an experimentation tool:

  • • high level of modeling accuracy, validated by simple and hybrid experiments.

  • • analog modeling principle, and possibility to emulate, in real time a large range of neurons or neural networks, thanks to a set of programmable parameters,

  • • model implementation simplicity, owing to a dedicated hardware and software interface.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal of Physiology, vol. 117, pp. 500–544, 1952.

    Google Scholar 

  2. B. Sofkey, C. Koch, Single cell models, in M. Arbib, editor, The handbook of brain theory and neural networks, pp. 879–884, MIT Press, Boston, MA, 1995.

    Google Scholar 

  3. C. Koch and I. Segev, Editors, Methods in neuronal modeling: from synapses to networks, MIT Press, Cambridge, MA, 1989.

    Google Scholar 

  4. M. Mahowald, R.J. Douglas, A silicon neuron, Nature, vol. 354, pp. 515–518, 1991.

    Article  Google Scholar 

  5. R.J. Douglas, M. Mahowald, A construction set for silicon neurons, in S.F. Zornetzer and al.editors, Neural and Electronics Networks, pp. 277–296, Academic Press, Arlington, 1995.

    Google Scholar 

  6. D. Dupeyron, S. Le Masson, Y. Deval, G. Le Masson and J.P. Dom, A BiCMOS implementation of the Hodgkin-Huxley formalism, Proc. of MicroNeuro'96, Lausanne, IEEE Computer Society Press, pp. 311–316, 1996.

    Google Scholar 

  7. A. Laflaquière, S. Le Masson, G. Le Masson and J.P. Dom, Accurate analog VLSI model of Calcium-dependent bursting neurons, International Conference on Neural Networks (ICNN'97, Houston, Texas), 1997.

    Google Scholar 

  8. S. Le Masson, A. Laflaqui ère, D. Dupeyron, T. Bal, G. Le Masson, Analog circuits for modeling biological neural networks: design and applications, IEEE Transactions on Biomedical Engineering, in press.

    Google Scholar 

  9. G. Le Masson, S. Le Masson and M. Moulins, From conductances to neural networks properties: analysis of simple circuits using the hybrid networks method, Progress in Biphysics and Molecular Biology, vol. 64 no2/3, pp. 201–220, 1995.

    Article  Google Scholar 

  10. R.W. Meech, Calcium-dependent activation in nervous tissues, Annual review of Biophysics and Bioengineering, vol. 7, pp. 1–18, 1978.

    Article  Google Scholar 

  11. G. Le Masson, E. Marder and L.F. Abbott, Activity-dependent regulation of conductances in model neurons, Science, vol. 259, pp. 1915–1917, 1993.

    Article  Google Scholar 

  12. G. Le Masson, Stabilité foncionnelle des réseaux de neurones: étude expérimentale et théorique dans le cas d'un réseau simple, Thèse de l'Université Bordeaux I, 1998.

    Google Scholar 

  13. D. A. McCormick, T. Bal, Sensory gating mechanisms of the thalamus, Current Opinion in Neurobiology, vol. 4, pp. 550–556, 1994

    Article  Google Scholar 

  14. T. Bal, D.A. McCormick, Mechanisms of oscillatory activity on guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker, Journal of Physiology, vol. 486, pp. 669–691, 1993.

    Google Scholar 

  15. A. Destexhe, A. Babloyantz, T. Sejnowski, Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal, vol. 65, pp. 1538–1552, 1993.

    Article  Google Scholar 

  16. T. Bal, M. von Krosigk, D.A. McCormick, Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro, J. of Physiology, vol. 483.3, pp. 641–663, 1995.

    Google Scholar 

  17. M. von Krosigk, T. Bal, D.A. McCormick, Cellular mechanisms of a synchronized oscillation in the thalamus, Science, vol. 261, pp. 361–364, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Douence, V., Laflaquière, A., Le Masson, S., Bal, T., Le Masson, G. (1999). Analog electronic system for simulating biological neurons. In: Mira, J., Sánchez-Andrés, J.V. (eds) Engineering Applications of Bio-Inspired Artificial Neural Networks. IWANN 1999. Lecture Notes in Computer Science, vol 1607. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100485

Download citation

  • DOI: https://doi.org/10.1007/BFb0100485

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66068-2

  • Online ISBN: 978-3-540-48772-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics