Skip to main content

A course on empirical processes

  • Conference paper
  • First Online:
Book cover École d'Été de Probabilités de Saint-Flour XII - 1982

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 1097))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, Kenneth (1982). Some limit theorems and inequalities for weighted nonidentically distributed empirical processes. Ph. D. thesis, Mass. Inst. of Tech. (12.1).

    Google Scholar 

  • Ash, Robert B. (1972). Real Analysis and Probability. Academic Press. N.Y. (11.1).

    Google Scholar 

  • Assouad, P. (1981). Sur les classes de Vapnik-Červonenkis. C.R. Acad. Sci. Paris 292 Sér. I 921–924. (9.1, 9.2, 9.3).

    MathSciNet  MATH  Google Scholar 

  • Assouad, P. (1983). Densité et dimension. Ann.Inst.Fourier(Grenoble) 33 no3 233–282. (9.1, 9.2, 9.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Aumann, R.J. (1961). Borel structures for function spaces, Illinois J. Math. 5 614–630. (10.2).

    MathSciNet  MATH  Google Scholar 

  • Bahavlov [Bakhvalov], N.S. (1959). On approximate calculation of multiple integrals (in Russian). Vestnik Moskov. Univ. Ser. Mat. Meh. Astron. Fiz. Khim. 1959 no. 4, 3–18. (8.1).

    Google Scholar 

  • Banach, Stefan, and K. Kuratowski (1929). Sur une généralisation du problème de la mesure. Fund. Math. 14 127–131. (3.1).

    MATH  Google Scholar 

  • Bennett, George W. (1962). Probability inequalities for the sum of bounded random variables. J. Amer. Statist. Assoc. 57, 33–45. (2.2).

    Article  MATH  Google Scholar 

  • Berkes, István, and Walter Philipp (1977). An almost sure invariance principle for the empirical distribution function of mixing random variables. Z. Wahrsch. verw. Geb. 41, 115–137. (1.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Bernštein, Sergei N. (1924). Ob odnom vidoizmenenii neravenstva Chebysheva i o pogreshnosti formuly Laplasa (in Russian). Uchen. Zapiski Nauchn.-issled. Kafedr Ukrainy, Otdel. Mat., vyp. 1, 38–48; reprinted in S. N. Bernštein, Sobranie Sochineniĭ [Collected Works], Tom IV, Teoriya Veroiatnostei, Matematicheskaya Statistika, Nauka, Moscow, 1964 pp. 71–79. (2.2).

    Google Scholar 

  • Bernštein, Sergei N. (1927). Teoriya Veroiatnostei (in Russian). Moscow. (2.2).

    Google Scholar 

  • Billingsley, Patrick (1968). Convergence of Probability Measures. Wiley, N.Y. (1.1.).

    MATH  Google Scholar 

  • Birgé, Lucien (1982). Personal communication. (7.2).

    Google Scholar 

  • Blum, J.R. (1955). On the convergence of empiric distribution functions. Ann. Math. Statist. 26 527–529. (6.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Borisov, I.S. (1981 a). On the accuracy of the approximation of empirical fields. Theor. Probability Appls. 26 632–633 (English), 641–642 (Russian). (1.1).

    Google Scholar 

  • Borisov, I.S. (1981 b). Some limit theorems for empirical distributions (in Russian). Abstracts of Reports, Third Vilnius Conf. Probability Th. Math. Statist. I, 71–72 (6.3).

    Google Scholar 

  • Borovkov, A.A., and V.S. Korolyuk (1965). On the results of asymptotic analysis in problems with boundaries. Theor. Probability Appls. 10 236–246 (English), 255–266 (Russian). (1.1).

    Article  MATH  Google Scholar 

  • Bourbaki, N. (1956). Eléments de mathématique, Première partie, livre VI, Intégration, Chap. 5, Intégration des mesures. Hermann, Paris. (1.2).

    Google Scholar 

  • Breiman, Leo (1968). Probability. Addison-Wesley, Reading, Mass. (1.1, 3.2).

    MATH  Google Scholar 

  • Bronštein [Bronshtein], E.M. (1976). ɛ-entropy of convex sets and functions. Siberian Math. J. 17 393–398 = Sibirskii Mat. Zh. 17 508–514. (7.3).

    Article  MathSciNet  Google Scholar 

  • Chernoff, Herman (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23 493–507 (2.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Christensen, J.P.R. (1971). On some properties of Effros Borel structure on spaces of closed subsets. Math. Ann. 195 17–23. (10.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Christensen, J.P.R. (1974). Topology and Borel Structure. North-Holland, Amsterdam; American Elsevier, N.Y. (10.3).

    MATH  Google Scholar 

  • Clements, G.F. (1963). Entropies of several sets of real valued functions. Pacific J. Math. 13 1085–1095. (7.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Cohn, Donald L. (1980). Measure theory. Birkhäuser, Boston, Basel. (10.3, 11.3).

    Book  MATH  Google Scholar 

  • Csörgő Sándor (1981). Limit behavior of the empirical characteristic function. Ann. Probability 9 130–144. (11.3).

    Article  MATH  Google Scholar 

  • Danzer, L., B. Grünbaum and V. L. Klee (1963). Helly's theorem and its relatives. Proc. Symp. Pure Math. (Amer. Math. Soc.) 7 101–180. (9.2).

    Article  MATH  Google Scholar 

  • Dehardt, J. (1971). Generalizations of the Glivenko-Cantelli theorem. Ann. Math. Statist. 42 2050–2055. (6.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Dehling, Herold (1983). Limit theorems for sums of weakly dependent Banach space valued random variables. Z. Wahrsch. verw. Geb. 63 393–342. (12.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Devroye, Luc (1982). Bounds for the uniform deviation of empirical measures. J. Multivariate Analysis 12 72–79. (12.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Donsker, Monroe D. (1951). An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc. 6. (1.1).

    Google Scholar 

  • Donsker, Monroe D. (1952). Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23 277–281 (1.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Doob, J.L. (1953). Stochastic Processes. Wiley, N.Y. (11.1).

    MATH  Google Scholar 

  • Dudley, R.M. (1966). Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10 109–126. (1.1, 4.1).

    MathSciNet  MATH  Google Scholar 

  • Dudley, R.M. (1967). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Functional Analysis 1 290–330. (2.1, 4.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R.M. (1973). Sample functions of the Gaussian process. Ann. Probability 1 66–103. (2.1, 11.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R.M. (1974). Metric entropy of some classes of sets with differentiable boundaries. J. Approximation Th. 10 227–236, Correction 26 (1979) 192–193. (7.1, 7.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R.M. (1978). Central limit theorems for empirical measures. Ann. Probability 6 899–929; Correction 7 (1979) 909–911. (4.1, 5.1, 6.2, 9.3, 10.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R.M. (1981 a). Donsker classes of functions. Statistics and Related Topics (Proc. Symp. Ottawa, 1980), North-Holland, N.Y., 341–352. (4.1, 5.2, 6.4).

    Google Scholar 

  • Dudley, R.M. (1981 b). Vapnik-Červonenkis Donsker classes of functions. Aspects statistiques et aspects physiques des processus gaussiens (Proc. Colloque C.N.R.S. St-Flour, 1980), C.N.R.S., Paris, 251–269, (10.3, 11.3).

    Google Scholar 

  • Dudley, R.M. (1982). Some recent results on empirical processes. Probability in Banach spaces III (Proc. Conf. Tufts Univ., 1980), Lecture Notes in Math. (Springer) 860 107–123. (12.1).

    Article  MathSciNet  Google Scholar 

  • Dudley, R.M. (1982). Empirical and Poisson processes on classes of sets or functions too large for central limit theorems. Z. Wahrsch. verw. Geb. 61 355–368. (8.1, 8.2, 8.3, 8.4).

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R.M., and Walter Philipp (1983). Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrschein. verw. Geb. 62 509–552. (1.1, 3.1, 3.2, 3.3, 4.1, 4.2, 12.1, 12.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Durst, Mark, and R.M. Dudley (1981). Empirical processes, Vapnik-Chervonenkis classes and Poisson processes. Prob. Math. Statist. (Wrocław) 1 no 2, 109–115. (6.3, 10.3, 11.4).

    MathSciNet  MATH  Google Scholar 

  • Eames, W., and L.E. May (1967). Measurable cover functions. Canad. Math. Bull. 10 519–523 (3.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Effros, E.G. (1965). Convergence of closed subsets in a topological space. Proc. Amer. Math. Soc. 16 929–931. (10.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Bršov, M.P. (1975). The Choquet theorem and stochastic equations. Analysis Math. 1, 259–271. (1.2).

    Article  MathSciNet  Google Scholar 

  • Evstigneev, I.V. (1977). "Markov times" for random fields. Theor. Probability Appls. 22 563–569 = Teor. Veroiatnost. i Primenen. 22 575–581 (8.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Feldman, J. (1971). Sets of boundedness and continuity for the canonical normal process. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2 357–367. Univ. Calif. Press. (11.3).

    Google Scholar 

  • Feller, W. (1968, 1971). An Introduction to Probability Theory and its Applications. Vol. I, 3d ed. (2.2, 9.1); Vol. II, 2d ed. (8.3). Wiley, N.Y.

    Google Scholar 

  • Freedman, David (1966). On two equivalence relations between measures. Ann. Math. Statist. 37 686–689. (10.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman, David (1971). Brownian Motion and Diffusion. Holden-Day, San Francisco. (1.1).

    MATH  Google Scholar 

  • Gaenssler, P. (1983). Empirical processes. Institute of Mathematical Statistics. Lecture Notes — Monograph Series 3. (1.1).

    Google Scholar 

  • Gaenssler, P. and W. Stute (1979). Empirical processes: a survey of results for independent and identically distributed random variables. Ann. Probability 7 193–243 (1.1, 6.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Giné M., Evarist (1974). On the central limit theorem for sample continuous processes. Ann. Probability 2 629–641. (2.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Gnedenko, B.V., and A.N. Kolmogorov (1949, 1954, 1968). Limit distributions for sums of independent random variables (transl. K.L. Chung). Addison-Wesley, Reading, Mass. (3.3).

    MATH  Google Scholar 

  • Goodman, Victor, J. Kuelbs and J. Zinn (1981). Some results on the LIL in Banach space with applications to weighted empirical processes. Ann. Probability 9 713–752. (4.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Gruber, P.M. (1981). Approximation of convex bodies by polytopes. Comptes Rendus (Doklady) Acad. bulgar. Sci. 34 621–622. (7.3).

    MathSciNet  MATH  Google Scholar 

  • Gutmann, S. (1980). The empirical measure is a sufficient statistic. Manuscript (unpublished). (10.1).

    Google Scholar 

  • Heinkel, B. (1979). Relation entre théorème central-limite et loi du logarithme itéré dans les espaces de Banach. Z. Wahrsch. verw. Geb. 49 211–220. (4.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeffding, Wassily (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13–30. (2.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables. Studia Math. 52 159–186. (3.2).

    MathSciNet  MATH  Google Scholar 

  • Hunt, G.A. (1966). Martingales et processus de Markov. Dunod, Paris. (11.1).

    Google Scholar 

  • Jain, Naresh, and Michael B. Marcus (1975 a). Central limit theorems for C(S)-valued random variables. J. Functional Analysis 19 216–231. (11.3)

    Article  MathSciNet  MATH  Google Scholar 

  • Jain, Naresh, and Michael B. Marcus (1975 b). Integrability of infinite sums of independent vector-valued random variables. Trans. Amer. Math. Soc. 212 1–36. (3.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Kac, Mark (1949). On deviations between theoretical and empirical distributions. Proc. Nat. Acad. Sci. USA 35 252–257. (8.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Kahane, Jean-Pierre (1968). Some random series of functions. D.C. Heath, Lexington, Mass. (3.2, 11.3).

    MATH  Google Scholar 

  • Kelley, John L. (1955). General Topology, Van Nostrand, Princeton. (10.3).

    MATH  Google Scholar 

  • Kiefer, Jack (1972). Skorohod imbedding of multivariate rv's, and the sample df. Z. Wahrsch. verw. Geb. 24 1–35 (1.1).

    Article  MATH  Google Scholar 

  • Kingman, J.F.C. (1968). The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. B 30 499–510. (11.2).

    MathSciNet  MATH  Google Scholar 

  • Kingman, J.F.C. (1973). Subadditive ergodic theory (with discussion). Ann. Probability 1 883–909. (11.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Kirszbraun, M.D. (1934). Über die zusammenziehende und Lipschitzsche Transformationen. Fund Math. 22 77–108. (7.2).

    MATH  Google Scholar 

  • Kolčinskii, V.I. (1981 a). On the central limit theorem for empirical measures. Theor. Probability Math. Statist. 24 71–82 = Teor. Verojatnost. i Mat. Statist. 24 63–75 (11.1, 11.3).

    MathSciNet  Google Scholar 

  • Kolčinskii, V.I. (1981 b). On the law of the iterated logarithm in Strassen's form for empirical measures. Ibid. 25, 40–47 (Russian), 43–49 (English). (4.2).

    Google Scholar 

  • Kolmogorov, A. (1931). Eine Verallgemeinerung des Laplace-Liapounoffschen Satzes. Izv. Akad. Nauk SSSR Otdel. Mat. Estest. Nauk, VII. Ser., no 7, 959–962. (Zentralblatt 3, 1932, p. 357). (1.1).

    MATH  Google Scholar 

  • Kolmogorov, A. (1933). Über die Grenzwertsätze der Wahrscheinlichkeitsrechnung. Izv. Akad. Nauk SSSR (Bull. Acad. Sci. URSS). VII. Ser., no 3, 363–372. (1.1).

    MATH  Google Scholar 

  • Kolmogorov, A. (1955). Bounds for the minimal number of elements of an ɛ-net in various classes of functions and their applications to the question of representability of functions of several variables by superpositions of functions of fewer variables (in Russian). Uspekhi Mat. Nauk (N.S.) 10 no 1 (63) 192–194. (7.1).

    Google Scholar 

  • Kolmogorov, A.N., and V.M. Tikhomirov (1959). ɛ-entropy and ɛ-capacity of sets in function spaces. Amer. Math. Soc. Transls. (Ser. 2) 17 (1961) 277–364 = Uspekhi Mat. Nauk 14 vyp. 2(86), 3–86 (6.0, 7.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Komlós, J., P. Major and G. Tusnády (1975). An approximation of partial sums of independent RV's, and the sample DF. I. Z. Wahrsch. verw. Geb. 32 111–131. (1.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Kuelbs, James D. (1977). Kolmogorov's law of the iterated logarithm for Banach space valued random variables. Illinois J. Math. 21 784–800. (3.2).

    MathSciNet  MATH  Google Scholar 

  • Kuelbs, James D. and R.M. Dudley (1980). Log log laws for empirical measures. Ann. Probability 8 405–418. (4.2, 10.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Kuelbs, James D. and Joel Zinn (1979). Some stability results for vector valued random variables. Ann. Probability 7 75–84. (4.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Kuratowski, Kazimierz (1966). Topology I, 5th ed., transl. from the French by J. Jaworowski. Academic Press, N.Y.; PWN, Warszawa. (10.2).

    MATH  Google Scholar 

  • Ledoux, Michel (1982). Loi du logarithme itéré dans C(S) et fonction caractéristique empirique. Z. Wahrsch. verw. Geb. 60 425–435. (11.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Lorentz, G.G. (1966). Metric entropy and approximation. Bull. Amer. Math. Soc. 72 903–937. (7.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Major, Péter (1976). Approximation of partial sums of i.i.d. rv's when the summands have only two moments. Z. Wahrsch. verw. Geb. 35 221–229. (1.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Marcus, Michael B. (1981). Weak convergence of the empirical characteristic function. Ann. Probability 9 194–201. (11.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Marcus, Michael B. and Walter Philipp (1982). Almost sure invariance principles for sums of B-valued random variables with applications to random Fourier series and the empirical characteristic process. Trans. Amer. Math. Soc. 269 67–90. (11.1).

    MathSciNet  MATH  Google Scholar 

  • McShane, E. J. (1934). Extension of range of functions. Bull. Amer. Math. Soc. 40 837–842. (7.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer, Paul-André (1972). Martingales and Stochastic Integrals I. Lecture Notes in Math. (Springer) 284. (11.1).

    Google Scholar 

  • Mourier, Edith (1951). Lois des grands nombres et théorie ergodique. C.R. Acad. Sci. Paris 232 923–925. (6.1).

    MathSciNet  MATH  Google Scholar 

  • Mourier, Edith (1953). Eléments aléatoires dans un espace de Banach. Ann. Inst. H. Poincaré 13 161–244. (6.1).

    MathSciNet  MATH  Google Scholar 

  • Nagaev, S.V. (1970). On the speed of convergence in a boundary problem, I, II. Theor. Probability Appls. 15 163–186, 403–429 = Teor. Veroiatnost. i Primenen. 15 179–199, 419–441. (1.1).

    Article  MATH  Google Scholar 

  • Natanson, I.P. (1957). Theory of Functions of a Real Variable, 2d ed., transl. by L. F. Boron, Vol. II, 1961. Ungar, N.Y. (10.2).

    Google Scholar 

  • Neveu, J. (1977). Processus ponctuels. Ecole d'été de probabilités de Saint-Flour VI, 1976, Lecture Notes in Math. (Springer) 598 249–447. (10.1).

    Article  MathSciNet  Google Scholar 

  • Okamoto, Masashi (1958). Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Statist. Math. 10 29–35. (2.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Parthasarathy, K.R. (1967). Probability Measures on Metric Spaces. Academic Press, N.Y. (1.2).

    Book  MATH  Google Scholar 

  • Philipp, Walter (1979). Almost sure invariance principles for sums of B-valued random variables. Probability in Banach Spaces II (Proc. Conf. Oberwolfach, 1978), Lecture Notes in Math. (Springer) 709 171–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Philipp, Walter (1980). Weak and Lp-invariance principles for sums of B-valued random variables. Ann. Probability 8 68–82. Correction (to appear). (1.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Pisier, G. (1975). Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach (suite et fin). Sém. Maurey-Schwartz 1975–76, Exposé IV, Ecole Polytechnique, Palaiseau. (4.2).

    Google Scholar 

  • Pollard, David B. (1982 a). A central limit theorem for empirical processes. J. Austral. Math. Soc. Ser. A, 33 235–248. (11.1, 11.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Pollard, David B. (1982 b). Convergence of Stochastic Processes. (Preprint, 61 pp.) (1.1).

    Google Scholar 

  • Pyke, R. (1968). The weak convergence of the empirical process with random sample size. Proc. Cambr. Philos. Soc. 64 155–160. (8.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Radon, J. (1921). Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83 113–115. (9.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, B.V. (1971). Borel structures for function spaces. Colloq. Math. 23 33–38. (10.2).

    MathSciNet  MATH  Google Scholar 

  • Rogers, C.A. (1964). Packing and Covering. Cambridge University Press, N.Y. (7.2).

    MATH  Google Scholar 

  • Sauer, N. (1972). On the density of families of sets. J. Combin. Th. A 13 145–147. (9.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt, Wolfgang M. (1975). Irregularities of distribution IX. Acta Arith. 27 385–396. (8.1).

    MathSciNet  MATH  Google Scholar 

  • Schwartz, Laurent (1973). Randon measures on arbitrary topological spaces and cylindrical measures. Tata Institute; Oxford Univ. Press, London. (10.3).

    MATH  Google Scholar 

  • Shelah, S. (1972). A combinatorial problem: stability and order for models and theories in infinitary languages. Pacific J. Math. 41 247–261. (9.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Shortt, Rae M. (1982). Existence of laws with given marginals and specified support. Ph. D. Thesis, Math., Mass. Inst. of Tech. (1.2).

    Google Scholar 

  • Sion, M. (1960). On uniformization of sets in topological spaces. Trans. Amer. Math. Soc. 96 237–245. (10.3).

    Article  MathSciNet  MATH  Google Scholar 

  • Skorohod, A.V. (1976). On a representation of random variables. Theor. Probability Appls. 21 628–632 (English), 645–648 (Russian). (1.2).

    Article  MathSciNet  Google Scholar 

  • Sonis, M.G. (1966). Certain measurable subspaces of the space of all sequences with a Gaussian measure (in Russian). Uspehi Mat. Nauk 21 no 5 (131) 277–279. (2.1).

    MathSciNet  Google Scholar 

  • Steele, J. Michael (1978). Empirical discrepancies and subadditive processes. Ann. Probability 6 118–127. (11.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Strassen, Volker (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. verw. Geb. 3 211–226. (1.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Ulam, Stanisław (1930). Zur Masstheorie in der allgemeinen Mengenlehre. Fund. Math. 16 140–150. (3.1).

    MATH  Google Scholar 

  • Uspensky, J.V. (1937). Introduction to Mathematical Probability. McGraw-Hill, N.Y. (2.2).

    MATH  Google Scholar 

  • Vapnik, V.N., and A. Ya. Červonenkis (1968). Uniform convergence of frequencies of occurrence of events to their probabilities. Doklady Akad. Nauk SSSR 181 781–783 (Russian) = Soviet Math. Doklady 9 915–918 (English). (9.1).

    Google Scholar 

  • Vapnik, V.N., and A. Ya. Červonenkis (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theor. Probability Appls. 16 264–280 = Teor. Verojatnost. i Primenen. 16 264–279. (9.1, 11.2, 12.1).

    Article  MATH  Google Scholar 

  • Vapnik, V.N., and A. Ya. Červonenkis (1974). Teoriya Raspoznavaniya Obrazov; Statisticheskie problemy obucheniya [Theory of Pattern Recognition; Statistical problems of learning; in Russian]. Nauka, Moscow. German ed.; Theorie der Zeichenerkennung, by W. N. Wapnik and A.J. Tscherwonenkis, transl. by K.G. Stöckel and B. Schneider, ed. S. Unger and K. Fritzsch. Akademie-Verlag, Berlin, 1979 (Elektronisches Rechnen und Regeln, Sonderband). (9.1, 12.1).

    Google Scholar 

  • Vapnik, V.N., and A. Ya. Červonenkis (1981). Necessary and sufficient conditions for the uniform convergence of means to their expectations. Theor. Probability Appls. 26 532–553 (English), 543–563 (Russian). (11.2).

    Article  Google Scholar 

  • Vorob'ev, N.N. (1962). Consistent families of measures and their extensions. Theor. Probability Appls. 7 147–163 (English), 153–169 (Russian). (1.2).

    Article  MATH  Google Scholar 

  • Vulikh, B.Z. (1961). Introduction to the Theory of Partially Ordered Spaces (transl. by L.F. Boron, 1967). Wolters-Noordhoff, Groningen. (3.1).

    MATH  Google Scholar 

  • Wenocur, R.S., and R.M. Dudley (1981). Some special Vapnik-Červonenkis classes. Discrete Math. 33 313–318. (9.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfowitz, J. (1954). Generalization of the theorem of Glivenko-Cantelli. Ann. Math. Statist. 25 131–138. (11.1).

    Article  MathSciNet  MATH  Google Scholar 

  • Wright, F.T. (1981). The empirical discrepancy over lower layers and a related law of large numbers. Ann. Probability 9 323–329. (7.2).

    Article  MathSciNet  MATH  Google Scholar 

  • Yukich, J. (1982). Convergence of empirical probability measures. Ph. D. thesis, Math., Mass. Inst. of Tech. (6.4).

    Google Scholar 

  • Yurinskii [Jurinskii], V.V. (1977). On the error of the Gaussian approximation for convolutions. Theor. Probability Appls. 22 236–247 (English), 242–253 (Russian). (12.2).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

P. L. Hennequin

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Dudley, R.M. (1984). A course on empirical processes. In: Hennequin, P.L. (eds) École d'Été de Probabilités de Saint-Flour XII - 1982. Lecture Notes in Mathematics, vol 1097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0099432

Download citation

  • DOI: https://doi.org/10.1007/BFb0099432

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13897-6

  • Online ISBN: 978-3-540-39109-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics