Advertisement

Some extensions of Thomas-Fermi theory

  • Jerome A. Goldstein
  • Gisèle Ruiz Rieder
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1223)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Benilan, Ph. and H. Brezis, The Thomas-Fermi problem, in preparation.Google Scholar
  2. [2]
    Benilan, Ph., H. Brezis, and M. G. Crandall, A semilinear elliptic equation in L1 (ℝN), Ann. Scuola Norm. Sup. Pisa 2(1975), 523–555.MathSciNetMATHGoogle Scholar
  3. [3]
    Brezis, H., Nonlinear problems related to the Thomas-Fermi equation, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations (ed. by G. M. de la Penha and L. A. Medieros), North-Holland, Amsterdam (1978), 81–89.Google Scholar
  4. [4]
    Brezis, H., Some variational problems of Thomas-Fermi type, in Variational Inequalities and Complementary Problems: Theory and Applications (ed. by R. W. Cottle, F. Giannessi, and J.-L. Lions), Wiley, New York (1980), 53–73.Google Scholar
  5. [5]
    Dyson, F. J. and A. Lenard, Stability of Matter, I, J. Math. Phys. 8 (1967), 423–434.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Fefferman, C. L., The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129–206.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Fermi, E., Un metodo statistico per la determinazione di alcune prioretà dell'atome, Rend. Acad. Naz. Lincei 6 (1927), 602–607.Google Scholar
  8. [8]
    Gallouët, Th. and J.-M. Morel, Resolution of a semilinear equation in L1, Proc. Roy. Soc. Edinburgh 96A (1984), 275–288 and 99A (1985), 399.CrossRefMATHGoogle Scholar
  9. [9]
    Gallouët, Th. and J.-M. Morel, On some semilinear problems in L1, Boll. Un. Mat. Ital. 4A (1985), 123–131.MATHGoogle Scholar
  10. [10]
    Lenard, A. and F. J. Dyson, Stability of matter, II, J. Math. Phys. 9 (1968), 698–711.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Lieb, E. H., The stability of matter, Rev. Mod. Phys. 48 (1976), 553–569.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Lieb, E. H., Thomas-Fermi theory and related theories of atoms and molecules, Rev. Mod. Phys. 53 (1981), 603–641.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Lieb, E. H. and B. Simon, Thomas-Fermi theory revisited, Phys. Rev. Lett. 33 (1973), 681–683.CrossRefGoogle Scholar
  14. [14]
    Lieb, E. H. and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Adv. Math. 23 (1977), 22–116.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Lieb, E. H. and W. E. Thirring, A bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett. 35 (1975), 687–689 and 1116.CrossRefGoogle Scholar
  16. [16]
    Rieder, G. R., Mathematical Contributions to Thomas-Fermi Theory, Ph.D. Thesis, Tulane University, New Orleans, 1986.MATHGoogle Scholar
  17. [17]
    Thomas, L. H., The calculation of atomic fields, Proc. Camb. Phil. Soc. 23 (1927), 542–548.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jerome A. Goldstein
    • 1
  • Gisèle Ruiz Rieder
    • 1
  1. 1.Department of Mathematics and Quantum Theory GroupTulane UniversityNew OrleansUSA

Personalised recommendations