On a class of semilinear parabolic equations in L1

  • G. Di Blasio
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1223)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45, 225–254 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H. Brézis and W. Strauss, Semilinear second order elliptic equations in L1, J. Math. Soc. Japan 25, 565–590 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M.G. Crandall, The semigroup approach to first order quasilinear equations in several space variable, Israel J. Math. 12, 108–132 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    G. Da Prato and P. Grisvard, Somme d'opérateurs linéaires et équations différentielles opérationelles, J. Math. Pures Appl. 54, 305–387 (1975)MathSciNetzbMATHGoogle Scholar
  5. [5]
    G. Di Blasio, Perturbations of second order elliptic operators and semi-linear evolution equations, Nonlinear Anal. TMA 3, 293–304 (1977)CrossRefzbMATHGoogle Scholar
  6. [6]
    G. Di Blasio, Linear parabolic evolution equations in Lp-spaces, Ann. Mat. Pura Appl. IV, 55–104 (1984)CrossRefzbMATHGoogle Scholar
  7. [7]
    F.J. Massey, Semilinear parabolic equations with L1 initial data, Indiana Univ. Math. J. 26, 399–412 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Pazy, Semigroups of linear operators and application to partial differential equations, Applied Math. Sc. 44, Springer-Verlag, New York 1983CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • G. Di Blasio
    • 1
  1. 1.Dipartimento di MatematicaUniversità di Roma ‘La Sapienza’RomaItaly

Personalised recommendations