Advertisement

On some singular nonlinear evolution equations

  • Marco Luigi Bernardi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1223)

Abstract

We study, in this paper, a class of singular or degenerate nonlinear abstract differential equations of parabolic type. We prove, for such equations, an existence and uniqueness result, in the framework of suitable Banach weighted spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. BAIOCCHI and M.S. BAOUENDI, Singular evolution equations, J. of Funct.Anal., 25 (1977), 103–120.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M.L. BERNARDI, Su alcune equazioni d'evoluzione singolari, Boll.Un. Mat.Ital., 5, 13-B (1976), 498–517.MathSciNetzbMATHGoogle Scholar
  3. [3]
    F.E. BROWDER, Nonlinear initial value problems, Annals of Math., 82, (1965), 51–87.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R.W. CARROLL and R.E. SHOWALTER, "Singular and Degenerate Cauchy Problems", Math.in Science and Engineering, n.127, Academic Press, New York, 1976.Google Scholar
  5. [5]
    G. DA PRATO and P. GRISVARD, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J.Math.Pures et Appl., 54 (1975), 305–387.zbMATHGoogle Scholar
  6. [6]
    G. DA PRATO and P. GRISVARD, On an abstract singular Cauchy problem, Comm. in P.D.E., 3 (11) (1978), 1077–1082.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A.FAVINI, Degenerate and singular evolution equations in Banach space, to appear on Math.Ann.Google Scholar
  8. [8]
    K.L. KUTTLER JR., A degenerate nonlinear Cauchy problem, Appl.Anal., 13 (1982), 307–322.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    K.L. KUTTLER JR., Implicit evolution equations, Appl.Anal., 16(1983), 91–99.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.E. LEWIS and C. PARENTI, Abstract singular parabolic equations, Comm. in P.D.E., 7 (3) (1982), 279–324.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J.L. LIONS, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires", Dunod-Gauthier Villars, Paris, 1969.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Marco Luigi Bernardi
    • 1
  1. 1.Dipartimento di MatematicaUniversità di PaviaPaviaItaly

Personalised recommendations