Skip to main content

Some geometric aspects of potential theory

  • Conference paper
  • First Online:
Stochastic Analysis and Applications

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1095))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BERG, C. and G. FORST. Potential Theory on Locally Compact Abelian Groups. Springer-Verlag, Berlin, 1975.

    Book  MATH  Google Scholar 

  2. BLUMENTHAL, R.M. Some relationships involving subordination. Proc. Amer. Math. Soc. 10 (1959) 502–510.

    Article  MathSciNet  MATH  Google Scholar 

  3. BLUMENTHAL, R.M. and R.K. GETOOR. Markov Processes and Potential Theory. Academic Press, New York, 1968.

    MATH  Google Scholar 

  4. BLUMENTHAL, R.M. and R.K. GETOOR. Dual processes and potential theory. Proc. 12th Biennial Seminar, Canad. Math. Congress (1970) 137–156.

    Google Scholar 

  5. BRELOT, M. Les étapes et les aspects multiples de la théorie du potentiel. L'Enseignement mathém. XVIII (1972) 1–36.

    MathSciNet  MATH  Google Scholar 

  6. BRETAGNOLLE, J. Résultats de Kesten sur les processus à accroissements indépendants. Séminaire de Probabilités V, Lecture Notes in Mathematics 191 21–36, Springer-Verlag, Berlin, 1971.

    Google Scholar 

  7. CHUNG, K.L. Probabilistic approach to the equilibrium problem in potential theory. Ann. Inst. Fourier 23 (1973) 313–322.

    Article  MATH  Google Scholar 

  8. CHUNG, K.L. Remarks on equilibrium potential and energy. Ann. Inst. Fourier 25 (1975) 131–138.

    Article  MathSciNet  MATH  Google Scholar 

  9. CHUNG, K.L. Lectures from Markov Processes to Brownian Motion. Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  10. CHUNG, K.L. and M. RAO. Equilibrium and energy. Probab. Math. Statist. 1 (1980) 99–108.

    MathSciNet  MATH  Google Scholar 

  11. COURANT, R., K. FRIEDRICHS and H. LEWY. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Annalen 100 (1928) 32–74.

    Article  MathSciNet  MATH  Google Scholar 

  12. FUKUSHIMA, M. Potential theory of symmetric Markov processes and its applications. Lecture Notes in Mathematics 550 119–133, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  13. FUKUSHIMA, M. Dirichlet Forms and Markov Processes. North-Holland, Amsterdam, 1980.

    MATH  Google Scholar 

  14. GETOOR, R.K. Some Asymptotic Formulas Involving Capacity. Z. Wahrscheinlichkeitstheorie 4 (1965) 248–252.

    Article  MathSciNet  MATH  Google Scholar 

  15. GLOVER, J. Energy and the maximum principle for non symmetric Hunt processes. Theory Probab. and its Applications XXVI (1981) 745–757.

    MathSciNet  MATH  Google Scholar 

  16. HAWKES, J. Polar sets, regular points and recurrent sets for the symmetric and increasing stable processes. Bull. London Math. Soc. 2 (1970) 53–59.

    Article  MathSciNet  MATH  Google Scholar 

  17. HAWKES, J. On the Hausdorff Dimension of the Intersection of the Range of a Stable Process with a Borel Set. Z. Wahrscheinlichkeitstheorie 19 (1971) 90–102.

    Article  MathSciNet  MATH  Google Scholar 

  18. HAWKES, J. Potential theory of Lévy processes. Proc. London Math. Soc. (3) 38 (1979) 335–352.

    Article  MathSciNet  MATH  Google Scholar 

  19. HAWKES, J. Transition and resolvent densities for Lévy processes. J. London Math. Soc. To appear.

    Google Scholar 

  20. HAWKES, J. Fourier methods in the geometry of small sets. In preparation.

    Google Scholar 

  21. HAWKES, J. Energy, capacity and polar sets for some Markov processes. In preparation.

    Google Scholar 

  22. HAWKES, J. Harmonic analysis of Lévy sets. In preparation.

    Google Scholar 

  23. HELMS, L.L. Introduction to Potnetial Theory. Wiley, New York, 1969.

    MATH  Google Scholar 

  24. HUNT, G.A. Markov processes and potentials I and II. Illinois J. Math. 1 (1957) 44–93 and 316–369.

    MathSciNet  MATH  Google Scholar 

  25. HUNT, G.A. Markov processes and potentials III. Illinois J. Math. 2 (1958) 151–213.

    MathSciNet  Google Scholar 

  26. ITÔ, K. and H.P. McKEAN. Diffusion processes and their sample paths. Springer-Verlag, Berlin, 1965.

    Book  MATH  Google Scholar 

  27. KAC, M. Aspects Probabilistes de la théorie du potentiel. Publications du séminaire de Mathématiques Supérieures, Montreal, 1970.

    MATH  Google Scholar 

  28. KAHANE, J.-P. Ensembles parfaits et processus de Lévy. Periodica Math. Hungar. 2 (1972) 49–59.

    Article  MathSciNet  MATH  Google Scholar 

  29. KAKUTANI, S. Two-dimensional Brownian motion and harmonic functions. Proc. Acad. Tokyo 20 (1944) 706–714.

    Article  MathSciNet  MATH  Google Scholar 

  30. KAKUTANI, S. Markoff processes and the Dirichlet problem. Proc. Acad. Tokyo 21 (1945) 227–233.

    Article  MathSciNet  MATH  Google Scholar 

  31. KANDA, M. Two Theorems on Capacity for Markov Processes with Stationary Independent Increments. Z. Wahrscheinlichkeitstheorie 35 (1976) 159–165.

    Article  MathSciNet  MATH  Google Scholar 

  32. KANDA, M. Characterization of Semipolar Sets for Processes with Stationary Independent Increments. Z. Wahrscheinlichkeitstheorie 42 (1978) 141–154.

    Article  MathSciNet  MATH  Google Scholar 

  33. KANDA, M. On the class of polar sets for a certain class of Lévy processes on the line. J. Math. Soc. Japan 35 (1983) 221–242.

    Article  MathSciNet  MATH  Google Scholar 

  34. KELLOGG, O.D. Foundations of Potential Theory. Springer-Verlag, Berlin, 1929; reprinted by Dover, New York, 1955.

    Book  MATH  Google Scholar 

  35. KESTEN, H. Hitting probabilities of single points for processes with stationary independent increments. Mem. Amer. Math. Soc. 93 (1969).

    Google Scholar 

  36. KINGMAN, J.F.C. Recurrence properties of processes with stationary independent increments. J. Austral. Math. Soc. 4 (1964) 223–228.

    Article  MathSciNet  MATH  Google Scholar 

  37. KINGMAN, J.F.C. Subadditive ergodic theory. Ann. Probab. 1 (1973) 883–909.

    Article  MathSciNet  MATH  Google Scholar 

  38. LAMPERTI, J. Wiener's test and Markov chains. J. Math. Anal. Appl. 6 (1963) 58–66.

    Article  MathSciNet  MATH  Google Scholar 

  39. LANDKOF, N.S. Foundations of Modern Potential Theory. Springer-Verlag, Berlin, 1972.

    Book  MATH  Google Scholar 

  40. McKEAN, H.P. A probabilistic interpretation of equilibrium charge distribution. J. Math. Kyoto Univ. 4 (1965) 617–625.

    MathSciNet  MATH  Google Scholar 

  41. OREY, S. Polar sets for processes with independent increments. In Markov processes and potential theory, ed. J. Chover, Wiley, New York, 1967.

    Google Scholar 

  42. PORT, S.C. and C.J. STONE. The asymmetric Cauchy process on the line. Ann. Math. Statist. 40 (1969) 137–143.

    Article  MathSciNet  MATH  Google Scholar 

  43. PORT, S.C. and C.J. STONE. Infinitely divisible processes and their potential theory I. Ann. Inst. Fourier (Grenoble) 21 (2) (1971) 157–275.

    Article  MathSciNet  MATH  Google Scholar 

  44. PORT S.C. and C.J. STONE. Infinitely divisible processes and their potential theory II. Ann. Inst. Fourier (Grenoble) 21 (4) (1971) 179–265.

    Article  MathSciNet  MATH  Google Scholar 

  45. PORT, S.C. and C.J. STONE. Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978.

    MATH  Google Scholar 

  46. PHILIPS, H.B. and N. WIENER. Nets and the Dirichlet problem. J. Math. and Phys. 2 (1923) 105–124.

    Article  MATH  Google Scholar 

  47. PRUITT, W.E. The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19 (1969) 371–378.

    MathSciNet  MATH  Google Scholar 

  48. PRUITT, W.E. Some Dimension Results for Processes with Independent Increments. In Stochastic Processes and Related Topics, ed. M. Puri. Academic Press, New York, 1975.

    Google Scholar 

  49. RAO, M. On a result of M. Kanda. Z. Wahrscheinlichkeitstheorie 41 (1977) 35–37.

    Article  MathSciNet  MATH  Google Scholar 

  50. SILVERSTEIN, M.L. Symmetric Markov Processes. Lecture Notes in Mathematics 426, Springer-Verlag, Berlin, 1974.

    MATH  Google Scholar 

  51. SILVERSTEIN, M.L. Boundary Theory for Symmetric Markov Processes. Lecture Notes in Mathematics 516, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  52. SILVERSTEIN, M.L. The sector condition implies that semipolar sets are quasi-polar. Z. Wahrscheinlichkeitstheorie 41 (1977) 13–33.

    Article  MathSciNet  MATH  Google Scholar 

  53. SPITZER, F. Electrostatic capacity, heat flow and Brownian motion. Z. Wahrscheinlichkeitstheorie 3 (1964) 110–121.

    Article  MathSciNet  MATH  Google Scholar 

  54. STEIN, E.M. and G. WEISS. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, 1971.

    MATH  Google Scholar 

  55. STRATTON, H.H. On dimension of support for stochastic processes with independent increments. Trans. Amer. Math. Soc. 132 (1968) 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  56. TAYLOR, S.J. Sample path properties of a transient stable process. J. Math. Mech. 16 (1967) 1229–1246.

    MathSciNet  MATH  Google Scholar 

  57. WERMER, J. Potential Theory. Lecture Notes in Mathematics 408, Springer-Verlag, Berlin, 1974.

    Book  MATH  Google Scholar 

  58. WHITMAN, W. Some strong laws for random walks and Brownian motion. Ph. D. Thesis, Cornell, 1964.

    Google Scholar 

  59. WIENER, N. The Dirichlet problem. J. Math. Phys. 3 (1924) 127–146.

    Article  MATH  Google Scholar 

  60. ZABCZYCK, J. Sur la théorie semi-classique du potentiel pour les processus à accorissements indépendants. Studia Math. 35 (1970) 227–247.

    MathSciNet  Google Scholar 

  61. ZABCZYCK, J. A note on semipolar sets for processes with independent increments. Lecture Notes in Mathematics 472 277–283, Springer-Verlag, Berlin, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aubrey Truman David Williams

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Hawkes, J. (1984). Some geometric aspects of potential theory. In: Truman, A., Williams, D. (eds) Stochastic Analysis and Applications. Lecture Notes in Mathematics, vol 1095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0099126

Download citation

  • DOI: https://doi.org/10.1007/BFb0099126

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13891-4

  • Online ISBN: 978-3-540-39103-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics