Advertisement

Time changes of Brownian motion and the conditional excursion theorem

  • Paul McGill
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1095)

Keywords

Brownian Motion Poisson Point Process Predictable Process Strong Markov Property Brownian Motion Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Dellacherie and P.A. Meyer, Probabilités et potentiel, Hermann, Paris, 1975.zbMATHGoogle Scholar
  2. 2.
    N. El-Karoui et M. Chaleyat-Maurel, Un problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur R. Cas continu. In Temps Locaux, Astérisque 52–3, Sciété Mathématique de France, 1978.Google Scholar
  3. 3.
    K. Ito, Poisson point processes attached to Markov processes, Proc. 6th Berkley Symp. Math. Stat. and Prob. Vol. 3, Univ. of California Press (1971) 225–240.Google Scholar
  4. 4.
    K. Ito and H.P. McKean, Diffusion processes and their sample paths, Springer-Verlag, Berlin and New York, 1965.CrossRefzbMATHGoogle Scholar
  5. 5.
    P.A. Jacobs, Excursions of a Markov process induced by continuous additive functionals, Zeit. fur Wahrscheinlichkeitstheorie 44 (1978) 325–336.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    T. Jeulin, Semi-martingales et grossissement d'une filtration. Lecture Notes in Mathematics Vol. 833, Springer-Verlag, Berlin and New York, 1980.CrossRefzbMATHGoogle Scholar
  7. 7.
    B.Maisonneuve, Systèmes régénératifs. Astérisque 15. Société Mathématique de France.1974.Google Scholar
  8. 8.
    B. Maisonneuve, Exit systems, Ann. of Prob. Vol.3 No.3 (1975) 399–411.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. McGill, Markov properties of diffusion local time: a martingale approach, Adv. Appl. Prob. 14 (1982) 789–810.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    P. McGill, Calculation of some conditional excursion formulae, Zeit. fur Wahrscheinlichkeitstheorie 61 (1982) 255–260.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    P. A. Meyer, Un cours sur les intégrales stochastiques, Séminaire de Probabilités X, Lecture Notes in Mathematics Vol. 510, Springer-Verlag, Berlin and New York (1976) 245–400.Google Scholar
  12. 12.
    L.C.G. Rogers, Williams' characterisation of the Brownian excursion law: proof and applications, Séminaire de Probabilités XV, Lecture Notes in Mathematics Vol.850, Springer-Verlag, Berlin and New York (1981) 227–250.Google Scholar
  13. 13.
    J.B. Walsh, Excursions and local time. In Temps Locaux, Astérisque 52–53, Société Mathématique de France, 1978.Google Scholar
  14. 14.
    D. Williams, Markov properties of Brownian local time, Bull. Amer. Math. Soc. 75 (1969) 1035–36.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Paul McGill
    • 1
  1. 1.Department of MathematicsThe New University of UlsterColeraineN. Ireland

Personalised recommendations