Advertisement

The uniqueness of regular DLR measures for certain one-dimensional spin systems

  • F. Papangelou
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1095)

Keywords

Probability Measure Random Field Conditional Distribution Spin System Forward Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benfatto, G., Presutti, E., Pulvirenti, M.: DLR measures for one-dimensional harmonic systems, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 41, 305–312 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cassandro, M., Olivieri, E., Pellegrinotti, A., Presutti, E.: Existence and uniqueness of DLR measures for unbounded spin systems, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 41, 313–334 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    De Masi, M.: One-dimensional DLR invariant measures are regular, Comm. Math. Phys. 67, 43–50 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dobrushin, R.L.: The description of a random field by means of conditional probabilities and conditions of its regularity (in Russian), Teor. Verojatnost. i Primenen. 13, 201–229 (1968). (English transl.: Theor. Probability Appl. 13, 197–224 (1968)).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions (in Russian), Teor. Verojatnost. i Premenen. 15, 469–497 (1970). (English transl.: Theor. Probability Appl. 15, 458–486 (1970)).Google Scholar
  6. 6.
    Kesten, H.: Existence and uniqueness of countable one-dimensional Markov random fields, Ann. Probability 4, 557–569 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lebowitz, J.L., Presutti, E.: Statistical mechanics of systems of unbounded spins, Comm. Math. Phys. 50, 195–218 (1976). Erratum: ibid. 78, 151 (1980).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Papangelou, F.: Stationary one-dimensional Markov random fields with a continuous state space. In “Probability, Statistics and Analysis” (ed. J.F.C. Kingman and G.E.H. Reuter), London Math. Soc. Lecture Note Series 79, 199–218. Cambridge: Cambridge University Press 1983.CrossRefGoogle Scholar
  9. 9.
    Papangelou, F.: On the absence of phase transition in one-dimensional random fields. (I) Sufficient conditions. Submitted.Google Scholar
  10. 10.
    Papangelou, F.: On the absence of phase transition in one-dimensional random fields. (II) Superstable spin systems. Submitted.Google Scholar
  11. 11.
    Ruelle, D.: Superstable interactions in classical statistical mechanics, Comm. Math. Phys. 18, 127–159 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ruelle, D.: Probability estimates for continuous spin systems, Comm. Math. Phys. 50, 189–194 (1976).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • F. Papangelou

There are no affiliations available

Personalised recommendations