Advertisement

Differentiability properties of vector valued functions

  • N. J. Kalton
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1221)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.B. Aleksandrov, Essays on the non-locally convex Hardy classes, 1–89, in Complex analysis and spectral theory, edited by V.P. Havin and N.K. Nikolskii, Springer Lecture Notes 856, Berlin-Heidelberg-New York 1981.Google Scholar
  2. 2.
    A.V. Bukhvalov and A.A. Danilevich, Boundary properties of analytic and harmonic functions with values in a Banach space, Mat. Zametki 31 (1982) 203–214, (Math. Notes 31 (1982) 104–110).MathSciNetzbMATHGoogle Scholar
  3. 3.
    W.J. Davis, D.J.H. Garling and N. Tomczak-Jaegermann, The complex convexity of quasi-normed spaces, J. Functional Analysis 55 (1984) 110–150.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P.N. Dowling, Unpublished notes, Kent 1984.Google Scholar
  5. 5.
    P.N. Dowling, Representable operators and the analytic Radon-Nikodym Property in Banach spaces, to appear.Google Scholar
  6. 6.
    N.J. Kalton, Representations of operators between function spaces, Indiana Math. J., Vol.33, No.5 (1984) 639–665.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N.J. Kalton, Analytic functions in non-locally convex spaces and applications, Studia Math., to appear.Google Scholar
  8. 8.
    N.J. Kalton, Plurisubharmonic functions on quasi-Banach spaces, Studia Math., to appear.Google Scholar
  9. 9.
    N.J. Kalton, Some applications of vector-valued analytic and harmonic functions, this volume.Google Scholar
  10. 10.
    V.G. Krotov, On differentiability of functions in Lp, 0 < p < 1, Math. USSR Sbornik 45 (1983) 101–119.CrossRefzbMATHGoogle Scholar
  11. 11.
    J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function spaces, Springer, Berlin-Heidelberg-New York, 1979.CrossRefzbMATHGoogle Scholar
  12. 12.
    E.M. Nikishin, Resonance theroems and superlinear operators, Uspehi Mat. Nauk. 25 (1970) 129–191 (Russian Math. Surveys 25 (1970) 124–187).MathSciNetzbMATHGoogle Scholar
  13. 13.
    J. Peetre, Locally analytically pseudo-convex topological vector spaces, Studia Math. 73 (1982) 252–262.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • N. J. Kalton
    • 1
  1. 1.University of Missouri-ColumbiaColumbia

Personalised recommendations