Some applications of vector-valued analytic and harmonic functions

  • N. J. Kalton
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1221)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.B. Aleksandrov, Approximation by rational functions and an analogue of the M. Riesz theorem on conjugate functions for p ε (0,1), Math. USSR, Sbornik 35 (1979) 301–316.CrossRefzbMATHGoogle Scholar
  2. 2.
    A.B. Aleksandrov, Essays on the non-locally convex Hardy classes, 1–89 of Complex Analysis and Spectral Theory, Springer Lecture Notes 864, Berlin-Heidelberg-New York 1981.Google Scholar
  3. 3.
    R.R. Coifman, A real characterization of Hp, Studia Math. 51 (1974) 269–274.MathSciNetzbMATHGoogle Scholar
  4. 4.
    R.R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Asterisque 77 (1980) 11–66.MathSciNetzbMATHGoogle Scholar
  5. 5.
    R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977) 569–645.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    G. S. de Souza, Spaces formed by special atoms, 413–425 of Functional Analysis, Holomorphy and Approximation Theory, North Holland 1984.Google Scholar
  7. 7.
    G.S. de Souza, R. O'Neil and G. Sampson, An analytic characterization of the special atom spaces, to appear.Google Scholar
  8. 8.
    G.S. de Souza and G. Sampson, A real characterization of the predual of the Bloch functions, J. London Math. Soc. (2) 27 (1983) 267–276.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    N.J. Kalton, Locally complemented subspaces and Lp-spaces for 0 < p < 1, Math. Nachr. 115 (1984) 71–97.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N.J. Kalton, Analytic functions in non-locally convex spaces and applications, Studia Math. to appear.Google Scholar
  11. 11.
    N.J. Kalton, Harmonic functions in non-locally convex spaces, to appear.Google Scholar
  12. 12.
    M.H. Tailbelson and G. Weiss, The molecular characterization of certain Hardy spaces, Asterisque 77 (1980) 67–150.MathSciNetGoogle Scholar
  13. 13.
    L. Waelbroeck, Topological vector spaces and algebras, Springer Lecture Notes 230, Berlin-Heidelberg-New York 1971.Google Scholar
  14. 14.
    P. Wojtasczyk, Hp-spaces (p ≤ 1) and spline systems, Studia Math. 77 (1984) 289–320.MathSciNetGoogle Scholar
  15. 15.
    A. Zygmund, Trigonometric series I, 2nd edition, Cambridge University Press, 1959.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • N. J. Kalton
    • 1
  1. 1.University of Missouri-ColumbiaColumbia

Personalised recommendations