Lectures on the central limit theorem for empirical processes

  • Evarist Giné
  • Joel Zinn
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1221)


Central Limit Theorem Gaussian Process Empirical Process Continuous Path Real Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, K. (1984). Probability inequalities for empirical processes and a law of the iterated logarithm. Ann. Probability 12, 1041–1067.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexander, K. (1985). The central limit theorem for empirical processes on Vapnik-Červonenkis classes. Ann. Probability, to appear.Google Scholar
  3. 3.
    Andersen, N. T. (1985). The calculus of non-measurable functions and sets. Aarhus Univ., Math. Inst. Various Publ. Series No. 36.Google Scholar
  4. 4.
    Andersen, N. T. and Dobrić, V. (1984). The central limit theorem for stochastic processes. Ann. Probability, to appear.Google Scholar
  5. 5.
    Andersen, N. T. and Dobrić, V. (1985). The central limit theorem for stochastic processes II. To appear.Google Scholar
  6. 6.
    Andersen, N. T.; Giné, E; Ossiander, M. and Zinn, J. (1986). The central limit theorem for stochastic processes under bracketing conditions. In preparation.Google Scholar
  7. 7.
    Araujo, A. and Giné, E. (1980). The central limit theorem for real and Banach valued random variables. Wiley, New York.zbMATHGoogle Scholar
  8. 8.
    Bennett, G. W. (1962). Probability inequalities for the sum of bounded random variables. J. Amer. Statist. Assoc. 57, 33–45.CrossRefzbMATHGoogle Scholar
  9. 9.
    Billingsley, P. (1968). Convergence of probability measures. Wiley, New York.zbMATHGoogle Scholar
  10. 10.
    Csörgö, M.; Csörgö, S.; Horváth, L. and Mason, D. L. (1984). Weighted empirical and quantile processes. Tech. Report Series, Lab. for Res. in Statist. and Prob., No. 24. Carleton U., Ottawa, Canada.zbMATHGoogle Scholar
  11. 11.
    Dudley, R. M. (1967). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Functional Analysis 1, 290–330.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dudley, R. M. (1973). Sample functions of the Gaussian process. Ann. Probability 1, 66–103.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dudley, R. M. (1978). Central limit theorems for empirical processes. Ann. Probability 6, 899–929.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dudley, R. M. (1984). A course on empirical processes. Lect. Notes in Math. 1097, 2–142. Springer, Berlin.zbMATHGoogle Scholar
  15. 15.
    Dudley, R. M. (1985). An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions. Lect. Notes in Math. 1153, 141–178. Springer, Berlin.zbMATHGoogle Scholar
  16. 16.
    Dudley, R. M. and Philipp, W. (1983). Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrsch. verw. Geb. 62, 509–552.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Durst, and Dudley, R. M. (1980). Empirical processes, Vapnik-Červonenkis classes and Poisson processes. Prob. and Math. Statist. (Wroclaw) 1, 109–115.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Fernique, X. (1974). Regularité des trajectoires des fonctions aléatoires gaussiennes. Lect. Notes in Math. 480, 1–96, Springer, Berlin.zbMATHGoogle Scholar
  19. 19.
    Fernique, X. (1978). Continuité et théorème limite central pour les transformées de Fourier des mésures aléatoires du second ordre. Zeits. Wahrs. verw. Geb. 42, 57–66.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fernique, X. (1985). Sur la convergence étroite des mésures gaussiennes. Zeits. Wahrs. verw. Geb. 68, 331–336.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gaenssler, P. (1983). Empirical Processes. Inst. Math. Statist. Lect. Notes, 3.Google Scholar
  22. 22.
    Giné, E. and Zinn, J. (1984a) Some limit theorems for empirical processes. Ann. Probability 12, 929–989.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Giné, E. and Zinn, J. (1984b). Empirical processes indexed by Lipschitz functions. Ann. Probability, to appear.Google Scholar
  24. 24.
    Giné, E. and Zinn, J. (1985). A remark on the central limit theorem for random measures and processes. Proceedings of the IV-th Vilnius Conference on Prob. Math. Statist. VNU Sci. Press. Utrecht, The Netherlands.Google Scholar
  25. 25.
    Heinkel, B. (1977). Mésures majorantes et théorème de la limite centrale dans C(S). Zeits. Wahrsch. verw. Geb. 38, 339–351.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Heinkel, B. (1983). Majorizing measures and limit theorems for c0-valued random variables. Lect. Notes in Math. 990, 136–149.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables. Studia Math. 52, 159–186.MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ibragimov, I. (1979). Sur la regularité des trajectoires des fonctions aléatoires. C. R. Acad. Sci. Paris A 289, 545–547.zbMATHGoogle Scholar
  29. 29.
    Jain, N. and Marcus, M. B. (1975). Central limit theorems for C(S)-valued random variables. J. Funct. Analysis 19, 216–231.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jain, N. and Marcus, M. B. (1978). Continuity of subgaussian processes. In Probability on Banach Spaces, Adv. in Probability, Vol. 4, pp. 81–196. Dekker, New York.Google Scholar
  31. 31.
    Kahane, J. P. (1968). Some random series of functions. Heath, Lexington, Massachusetts.zbMATHGoogle Scholar
  32. 32.
    Kolčinskii, V. I. (1981). On the central limit theorem for empirical measures. Theor. Probability Math. Statist. 24, 71–82 (translat. from Russian).MathSciNetGoogle Scholar
  33. 33.
    Kolmogorov, A. N. (1931). Eine Verallgemeinerung des Laplace-Liapunoffschen Satzes. Izv. Akad. Nauk. SSSR Otdd. Mat. Estest. Nauk, VII Ser., no. 7, 959–962.zbMATHGoogle Scholar
  34. 34.
    Kolmogorov, A. N. (1933). Über die Grenzwertsätze der Wahrscheinlichkeitsrechnung. Izv. Akad. Nauk SSSR. VII Ser., no. 3, 363–372.zbMATHGoogle Scholar
  35. 35.
    Kolmogorov, A. N. and Tikhomirov, V. M. (1959). ε-entropy and ε-capacity of sets in function spaces. Uspekhi Mat. Nauk 14 vyp. 2 (86), 3–86. (Amer. Math. Soc. Transl. (Ser. 2) 17 (1961) 277–364).MathSciNetzbMATHGoogle Scholar
  36. 36.
    Le Cam, L. (1983a). A remark on empirical processes. In A Festschrift for Erich L. Lehman in honor of his sixty fifth birthday, 305–327. Wadsworth, Belmont, California.Google Scholar
  37. 37.
    Le Cam, L. (1983b). Manuscript of a forthcoming book.Google Scholar
  38. 38.
    Ledoux, M. and Talagrand, M. (1984). Conditions d'integrabilité pour les multiplicateurs dans le TLC Banachique. Preprint.Google Scholar
  39. 39.
    Marcus, M. B. (1981). Weak convergence of the empirical characteristic function. Ann. Probability 9, 194–201.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Ossiander, M. (1985). A central limit theorem under metric entropy with L 2-bracketing. Ann. Probability, to appear.Google Scholar
  41. 41.
    Pisier, G. (1984). Remarques sur les classes de Vapnik-Červonenkis. Ann. Inst. H. Poincaré, Prob. et Statist. 20, 287–298.MathSciNetzbMATHGoogle Scholar
  42. 42.
    Pisier, G. and Zinn, J. (1978). On the limit theorems for random variables with values in L p, p ≥ 2. Z. Wahrs. verw. Geb. 41, 289–304.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Pollard, D. (1982). A central limit theorem for empirical processes. J. Austral. Math. Soc., Ser. A 33, 235–248.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Pollard, D. (1984). Convergence of Stochastic Processes. Springer, Berlin.CrossRefzbMATHGoogle Scholar
  45. 45.
    Preston, C. (1972). Continuity properties of some Gaussian processes. Ann. Math. Statist. 43, 285–292.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Rhee, W. T. (1985). Central limit theorem and increment conditions. Prob. Statist. Letters, to appear.Google Scholar
  47. 47.
    Sauer, N. (1972). On the density of families of sets. J. Combin. Theory Ser. A 13, 145–147.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Strassen, V. and Dudley, R. M. (1969). The central limit theorem and ε-entropy. Lect. Notes in Math. 89, 224–231. Springer, Berlin.zbMATHGoogle Scholar
  49. 49.
    Stute, W. (1984). Discussion on “Some limit theorems for empirical processes” by Giné and Zinn. Ann. Probability 12, 997–998.MathSciNetCrossRefGoogle Scholar
  50. 50.
    Sudakov, V. N. (1971). Gaussian random processes and measures of solid angles in Hilbert spaces. Dokl. Akad. Nauk SSSR 197, 43–45.MathSciNetGoogle Scholar
  51. 51.
    Talagrand, M. (1984). Measurability properties for empirical processes. Ann. Probability, to appear.Google Scholar
  52. 52.
    Talagrand, M. (1985a). Donsker classes and shattered sets. To appear.Google Scholar
  53. 53.
    Talagrand, M. (1985b). Donsker classes and random geometry. To appear.Google Scholar
  54. 54.
    Talagrand, M. (1985c). Continuity of Gaussian processes. In preparation.Google Scholar
  55. 55.
    Vapnik, V. N. and Červonenkis, A. Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theor. Prob. Appl. 16, 164–280 (translated from Russian).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Evarist Giné
    • 1
  • Joel Zinn
    • 1
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations