Brownian motion and UMD-spaces

  • D. J. H. Garling
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1221)


Banach Space Brownian Motion Probability Space Banach Lattice Stochastic Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aldous, D.J. Unconditional bases and martingales in L p (F), Math. Proc. Cambridge Phil. Soc. 85 (1979) 117–123.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Billingsley, P. Convergence of Probability Measures (New York, Wiley, 1968).zbMATHGoogle Scholar
  3. [3]
    Bourgain,J. Some remarks on Banach spaces in which martingale difference sequences are unconditional, Arkiv Mat. (1983) 163–168.Google Scholar
  4. [4]
    Burkholder, D. A geometrical condition that implies the existence of certain singular integrals of Banach-space valued functions, Proceedings of a conference on Harmonic Analysis, Volume I (Belmont, Wadsworth International, 1983).Google Scholar
  5. [5]
    Burkholder, D. A geometrical characterisation of Banach spaces in which martingale difference sequences are unconditional, Annals of Probability 9 (1981) 997–1011.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    James, R.C. Weak compactness and reflexivity, Israel J. Math. 2 (1964) 101–119.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    James, R.C. Super-reflexive spaces with bases, Pacific J. Math. 41 (1972) 409–419.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Kussmaul, A.U. Stochastic integration and generalised martingales, (London, Pitman,1977).zbMATHGoogle Scholar
  9. [9]
    Maurey, B. Systeme de Haar, Seminaire Maurey-Schwartz (Ecole Polytechnique, Paris 1975).Google Scholar
  10. [10]
    Maurey, B. and Pisier, G. Séries de variables aléatoires vectorielles indépendentes et propriétés géometriques des espaces de Banach, Studia Math. 58 (1976) 45–90.MathSciNetzbMATHGoogle Scholar
  11. [11]
    McKean, H.P., Jr. Stochastic Integrals (New York, Academic Press, 1969).zbMATHGoogle Scholar
  12. [12]
    Métivier, M and Pellaumail, J. Stochastic Integration (New York, Academic Press, 1980).zbMATHGoogle Scholar
  13. [13]
    Meyer,P.A. Martingales and Stochastic Integrals I, Springer Lecture Notes in Mathematics, 284, 1972.Google Scholar
  14. [14]
    Meyer,P.A. Un cours sur les Intégrales stochastiques, Springer Lecture Notes in Mathematics, 511, 1976Google Scholar
  15. [15]
    Rubio de Francia,J.L. Martingale and Integral Transforms of B-valued functions.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • D. J. H. Garling
    • 1
  1. 1.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeUK

Personalised recommendations