Advertisement

On the dunford and pettis integrals

  • L. Drewnowski
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1221)

Keywords

Banach Space Compact Subset Convex Subset Closed Subset Linear Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.T. ANDREWS, Universal Pettis integrability, Can. J. Math. 37, 141–159 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    H.H. CORSON, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101, 1–15 (1961).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J. DIESTEL and J.J. UHL, Jr., Vector Measures, Providence, R.I., 1977.Google Scholar
  4. 4.
    J. DIESTEL and J.J. UHI, Jr., Progress in vector measures — 1977–83, Lect. Notes Math. vol. 1033, 144–192 (1983).MathSciNetCrossRefGoogle Scholar
  5. 5.
    G.A. EDGAR, Measurability in a Banach space.II, Indiana Univ. Math. J. 28, 559–579 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    G.A. EDGAR, On pointwise-compact sets of measurable functions, Lect. Notes Math. vol. 945 (1982).Google Scholar
  7. 7.
    R.F. GEITZ, Pettis integration, Proc. Amer. Math. Soc. 82, 81–86 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    R.F. GEITZ, Geometry and the Pettis integral, Trans. Amer. Math. Soc. 269, 535–548 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    K. MUSIAŁ, The weak Radon-Nikodym property in Banach spaces, Studia Math. 54, 151–173 (1979).MathSciNetzbMATHGoogle Scholar
  10. 10.
    K. MUSIAŁ, Pettis integration, Proc. 13th Winter School on Abstract Analysis, Srni (Czechoslovakia), 20–26 Jan. 1985, in: Rend. Circ. Mat. Palermo (Suppl.), to appear.Google Scholar
  11. 11.
    R. POL, On a question of H. H. Corson and some related problems, Fund. Math. 109, 141–154 (1980).MathSciNetzbMATHGoogle Scholar
  12. 12.
    F.D. SENTILLES and R.F. WHEELER, Pettis integration via the Stonian approach, Pacific J. Math. 107, 473–496 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. TALAGRAND, Pettis integral and measure theory, Memoirs AMS vol. 51 no. 307, Providence, R.I., 1984.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • L. Drewnowski
    • 1
    • 2
  1. 1.Institute of MathematicsA. Mickiewicz UniversityPoznańPoland
  2. 2.Polish Academy of Sciences Poznań BranchMathematical InstitutePoland

Personalised recommendations