Advertisement

Relative invariants for commutative rings

  • A. Verschoren
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1029)

Keywords

Exact Sequence Prime Ideal Commutative Ring Isomorphism Class Picard Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Auslander B., The Brauer group of a ringed space, J. Algebra 4 (1966) 220–273.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Auslander B., Central separable algebras which are locally endomorphism rings of free modules, Proc. A.M.S. 30 (1971) 395–404.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Auslander M., Goldman O., The Brauer group of a commutative ring, Trans. A.M.S. 97 (1960) 367–409.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Auslander M., Goldman O., Maximal orders, Trans. A.M.S. 97 (1960) 1–24.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Bass H., Algebraic K-theory, Benjamin, New-York 1968zbMATHGoogle Scholar
  6. [6]
    Bourbaki N., Algèbre commutative, Eléments de Math. 27, 28, 30, 31, Hermann, Paris, 1961–66.Google Scholar
  7. [7]
    De Meyer F., Ingraham E., Separable Algebras over Commutative Rings, LNM 181, Springer Verlag, Berlin 1971.zbMATHGoogle Scholar
  8. [8]
    Fossum R., The Divisor Class Group of a Krull Domain, Ergebnisse der Math. 74, Springer Verlag, Berlin 1973.zbMATHCrossRefGoogle Scholar
  9. [9]
    Gabber O., Some theorems on Azumaya Algebras, in: Groupe de Brauer, LNM 844, Springer Verlag, Berlin 1981, 129–209.CrossRefGoogle Scholar
  10. [10]
    Gabriel P, Des catégories abeliennes, Bull. Soc. Math. France 90, (1962) 323–448.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Gabriel P, Popescu N, Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes, C.R. Ac. Sci. Paris, 258 (1964) 4188–4190.zbMATHGoogle Scholar
  12. [12]
    Golan J. Localization in Noncommutative rings, Pure and Appl. Math., M. Dekker, New York 1975.Google Scholar
  13. [13]
    Goldman O, Rings and Modules of Quotients, J. Of algebra 13 (1969) 10–47.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Grothendieck A. Le groupe de Brauer, I, II, III, in: "Dix exposés sur la Cohomologie des Schémas", North Holland, Amsterdam.Google Scholar
  15. [15]
    Hartshorne R., Algebraic Geometry, Springer Verlag, Berlin 1977.zbMATHCrossRefGoogle Scholar
  16. [16]
    Ischebeck F. Zur Picard Gruppe eines Produktes, Math. Z. 139,(1974) 141–157.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Nastasescu C., Van Oystaeyen F., Graded and filtered Rings and Modules, LNM 758, Springer Verlag, Berlin 1979.zbMATHGoogle Scholar
  18. [18]
    Orzech M., Brauer Groups and Class Groups for a Krull Domain, in: "Brauer Groups in Ring Theory and Algebraic Geometry", LNM 917, Springer Verlag, Berlin 1982.Google Scholar
  19. [19]
    Orzech M., Small C., The Brauer Group of a commutative Ring, Marcel Dekker, New-York 1975.zbMATHGoogle Scholar
  20. [20]
    Orzech M., Verschoren A., Some Remarks on Brauer Groups of Krull Domains, LNM 917, Springer Verlag, Berlin 1982.zbMATHGoogle Scholar
  21. [21]
    Stenström B., Rings of Quotients, Springer Verlag, Berlin 1975.zbMATHCrossRefGoogle Scholar
  22. [22]
    Van Oystaeyen F., On graded Rings and Modules of Quotients, Comm. in algebra 6 (1978) 1923–1959.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Van Oystaeyen F. Prime Spectra in Non-commutative Algebra, LNM 444, Springer Verlag, Berlin, 1975.zbMATHCrossRefGoogle Scholar
  24. [24]
    Van Oystaeyen F., Graded Azumaya Algebras and Brauer Groups, in: "Proceedings Ring Theory, U.I.A., 1980", LNM 825, Springer Verlag, Berlin 1980.CrossRefGoogle Scholar
  25. [25]
    Van Oystaeyen F., Verschoren A., Reflectors and localization. Application to sheaf theory, M. Dekker, New-York 1979.zbMATHGoogle Scholar
  26. [26]
    Van Oystaeyen F. Verschoren A., The Brauer Group of a Projective Variety, Israël J. Math. 42 (1982) 37–59.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    Van Oystaeyen F. Verschoren A., The Brauer Group of a Projective Curve, Israël J. Math, 42 (1982) 327–333.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Van Oystaeyen F. Verschoren A., Relative Invariants of Rings, Part I: The Commutative Theory, Marcel Dekker, New-York 1983.zbMATHGoogle Scholar
  29. [29]
    Verschoren A, On the Picard Group of a Grothendieck Category, Comm. Algebra 8 (1980) 1169–1194.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    Verschoren A., The Brauer group of a quasi-affine scheme, in: "Brauer groups in Ring theory and Algebraic Geometry, LNM 917, Springer Verlag, Berlin 260–278.Google Scholar
  31. [31]
    Verschoren A., On the reflexive class group, Indag. Math., to appear.Google Scholar
  32. [32]
    Verschoren A., Exact sequences for relative Brauer groups and Picard groups, J. Pure and Appl. Algebra, to appear.Google Scholar
  33. [33]
    Verschoren A., On the Picard group of a quasi-affine scheme, to appear.Google Scholar
  34. [34]
    Yuan S., Reflexive Modules and Algebra Class Groups over Noetherian Integrally closed Domains, I. of Algebra 32 (1974) 405–417.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. Verschoren
    • 1
  1. 1.University of Antwerp, U. I. A.Belgium

Personalised recommendations