Modifications monomiales

  • Jaap Bartijn
  • Jan R. Strooker’
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1029)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Bourbaki, Algèbre commutative, Chap.1: Modules plats, Hermann, Paris 1961.zbMATHGoogle Scholar
  2. [2]
    N. Bourbaki, Algèbre commutative, Chap.3: Graduations, filtrations et topologies, Hermann, Paris 1961.zbMATHGoogle Scholar
  3. [3]
    N. Bourbaki, Algèbre, Chap.10: Algèbre homologique, Masson, Paris 1981.Google Scholar
  4. [4]
    S.H. Cox Jr. and D.E. Rush, Finiteness in flat modules and algebras, J. Alg. 32 (1974), 44–50.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    E.G. Evans and P. Griffith, The syzygy problem, Ann. of Math. 114 (1981), 323–333.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    H.-B. Foxby, Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand. 40 (1977), 5–19.MathSciNetzbMATHGoogle Scholar
  7. [7]
    H.-B. Foxby, On the μi in a minimal injective resolution II, Math. Scand.41 (1977), 19–44.MathSciNetzbMATHGoogle Scholar
  8. [8]
    P. Griffith, A representation theorem for complete local rings, J. Pure Appl. Alg. 7 (1976), 303–315.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    P. Griffith, Maximal Cohen-Macaulay modules and representation theory, J. Pure Appl. Alg. 13 (1978), 321–334.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer, Berlin 1966.Google Scholar
  11. [11]
    R. Hartshorne and R. Speiser, Local cohomological dimension in characteristic p, Ann. of Math. 105 (1977), 45–79.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    M. Hochster, Topics in the homological theory of modules over commutative rings, C.B.M.S. Regional Conf. Ser. in Math. no. 24, Amer. Math. Soc., Providence R.I. 1975.Google Scholar
  13. [13]
    M. Hochster, Cole prizes for 1980, Notices of the Amer. Math. Soc. 27 (1980), 164–166.Google Scholar
  14. [14]
    D. Lazard, Autour de la platitude, (Thèse), Bull. Soc. Math. France 97 (1969), 81–128.MathSciNetzbMATHGoogle Scholar
  15. [15]
    D.G. Northcott, Finite free resolutions, Cambridge Tracts in Math. 71, Cambr. Univ. Press, Cambridge 1976.CrossRefGoogle Scholar
  16. [16]
    C. Peskine et L. Szpiro, Dimension projective finie et cohomologie locale, I.H.E.S. Publ. Math. no. 42 (1973), 47–119.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    M. Raynaud and L. Gruson, Critères de platitude et de projectivité, Inv. Math. 13 (1971), 1–89.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    D.E. Rush, Some applications of Griffith’s basic submodules, J. Pure Appl. Alg. 11 (1977), 41–44.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    D.E. Rush, Big Cohen-Macaulay modules, Ill. J. Math. 24 (1980), 606–611.MathSciNetzbMATHGoogle Scholar
  20. [20]
    P. Schenzel, Dualizing complexes and systems of parameters, J. Alg. 58 (1979), 495–501.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    P. Schenzel, Cohomological annihilators, Math. Proc. Camb. Phil. Soc. 91(1982), 345–350.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    J-P Serre, Algèbre Locale, Multiplicités, Lecture Notes, Math. 11, Springer, Berlin 1965.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Jaap Bartijn
    • 1
  • Jan R. Strooker’
    • 1
  1. 1.Mathematisch InstituutUtrechtThe Netherlands

Personalised recommendations