Separating tubular series

  • Claus Michael Ringel
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1029)


Direct Summand Projective Module Dimension Vector Path Algebra Indecomposable Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bernstein, I.N., Gelfand, I.M. and Ponomarev, V.A.: Coxeter functors and Gabriel’s theorem. Uspechi Mat. Nauk 28 (1973), engl. translation: Russian Math. Surveys 28 (1973), 17–32.Google Scholar
  2. [2]
    Brenner, S. and Butler, M.C.R.: Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors. In: Representation theory II. Springer Lecture Notes 832 (1980).Google Scholar
  3. [3]
    D’Este, G. and Ringel, C.M.: Coherent tubes. To appear in J. Algebra.Google Scholar
  4. [4]
    Dlab, V., and Ringel, C.M.: Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. 173 (1976).Google Scholar
  5. [5]
    Happel, D. and Ringel, C.M.: Tilted algebras. To appear in Trans. Amer. Math. Soc.Google Scholar
  6. [6]
    Ovsienko, S.A.: Integral weakly positive forms. In: Schur matrix problems and quadratic forms.Kiev (1978), 3–17.Google Scholar
  7. [7]
    Ringel, C.M.: Tame algebras. In: Representation theory I. Springer Lecture Notes 831 (1980).Google Scholar
  8. [8]
    Ringel, C.M.: Tame algebras and root systems. To appear.Google Scholar
  9. [9]
    Zavadskij, A.G. and Nazarova, L.A.: Partially ordered sets of tame type. In: Matrix problems. Kiev (1977), 122–143.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Claus Michael Ringel
    • 1
  1. 1.Fakultät für Mathematik UniversitätBielefeld 1

Personalised recommendations