The regular representations of the tame hereditary algebras

  • Vlastimil Dlab
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1029)


Division Ring Regular Representation Homogeneous Representation Finite Dimensional Representation Indecomposable Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DLAB V.: On classification of torsion-free abelian groups of finite rank. Symposia Math. Inst. Naz. Alta Mat. No. 23, Acad. Press 1979, 181–188.Google Scholar
  2. [2]
    DLAB V., RINGEL C.M.: On algebras of finite representation type. J. Algebra 33 (1975), 306–394.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    DLAB V., RINGEL C.M.: Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc. No. 173 (1976).Google Scholar
  4. [4]
    DLAB V., RINGEL C.M.: Normal forms of real matrices with respect to complex similarity. Linear Alg. and Appl. 17 (1977), 107–124.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    DLAB V., RINGEL C.M.: Real subspaces of a quaternion vector space. Can. J. Math. 30 (1978), 1228–1242.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    DLAB V., RINGEL C.M.: The representations of tame hereditary algebras. Proc. Conf. Repr. Theory (Philadelphia, 1976), Marcel Dekker (1978), 329–353.Google Scholar
  7. [7]
    DLAB V., RINGEL C.M.: A remark on normal form of matrices. Linear Alg. and Appl. 30 (1980), 109–114.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    DLAB V., RINGEL C.M.: The preprojective algebra of a modulated graph. Proc. ICRA (Ottawa, 1979), Springer Lecture Notes No. 832, 216–231.Google Scholar
  9. [9]
    DLAB V., RINGEL C.M.: Eigenvalues of Coxeter transformations and the Gelfand-Kirillov dimension of the preprojective algebras. Proc. Amer. Math. Soc. 83 (1981), 228–232.MathSciNetzbMATHGoogle Scholar
  10. [10]
    DLAB V., RINGEL C.M.: A class of bounded hereditary noetherian domains. To appear in J. Algebra.Google Scholar
  11. [11]
    RINGEL C.M.: Representations of K-species and bimodules. J. Algebra 41 (1976), 269–302.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    RINGEL C.M.: Infinite dimensional representations of finite dimensional hereditary algebras. Symposia Math. Inst. Naz. Alta Mat. No. 23, Acad. Press 1979, 321–412.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Vlastimil Dlab
    • 1
  1. 1.Vlastimil Dlab MathematicsKuwait UniversityKuwait

Personalised recommendations