Advertisement

Series de Poincare dans la theorie des invariants

  • T. A. Springer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1029)

Keywords

Nous Allons Ceci Gene Nous Faisons Dimension Finie Fonction Rationnelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Cayley, A second memoir upon quantics, Coll. Math. Papers II, 250–275, Cambridge Univ. Press, 1889.Google Scholar
  2. [2]
    E.B. Dynkin, Semi-simple subalgebras of semi-simple Lie algebras, Am. Math. Soc. Transl. Ser. 2, 6 (1957), 111–245 (=Mat. Sbornik N.S. 30 (1952), 349–462).zbMATHCrossRefGoogle Scholar
  3. [3]
    D. Hilbert, Über die vollen Invariantensysteme Ges. Abh., II2, 287–344, Springer-Verlag, 1970.Google Scholar
  4. [4]
    M. Hochster-J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. Math., 13(1974), 125–175.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    V.G. Kac-V.L. Popov-E.B. Vinberg, Sur les groupes linéaires algébriques dont l’algèbre des invariants est libre, C.R. Acad. Sc. Paris, 283 (1976), 875–878.MathSciNetzbMATHGoogle Scholar
  6. [6]
    G. Kempf, The Hochster-Roberts theorem of invariant theory, Mich. Math. J. 26 (1979), 19–32.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    D. Luna, Slices étales, Bull. Soc. Math. France, Mémoire 33(1973), 81–105.zbMATHGoogle Scholar
  8. [8]
    T. Molien, Über die Invarianten der linearen Substitutionsgruppen, Sitzungsber.K. Preuss.Akad. Wiss. (1897), 1152–1156.Google Scholar
  9. [9]
    M. Nagata, Local Rings, Interscience, 1962.Google Scholar
  10. [10]
    V.L. Popov, Constructive invariant theory, dans: Tableaux de Young et fonctions de Schur en algèbre et géométrie (conférence à Toruń), 303–334, Astérisque, vol. 87–88, Soc. Math. France, 1981.Google Scholar
  11. [11]
    V.L. Popov, Le théorème de finitude pour les représentations dont l’algèbre des invariants est libre (en russe), Izv. Akad. Nauk SSSR, 46(1982), 347–371.Google Scholar
  12. [12]
    G.W. Schwarz, Representations of simple Lie groups with regular rings of invariants, Inv. Math. 49 (1978), 167–191.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    W. Smoke, Dimension and multiplicity for graded algebras, J. Alg. 21 (1972), 149–173.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    T.A. Springer, Invariant theory, Lect. Notes in Math, no 585, Springer-Verlag, 1977.Google Scholar
  15. [15]
    T.A. Springer, On the invariant theory of SU2, Proc. Kon. Ak. v. Wet. Amsterdam A 83, (1980), 339–345.MathSciNetzbMATHGoogle Scholar
  16. [16]
    R.P. Stanley, Combinatory reciprocity theorems, Adv. Math. 14 (1974), 194–253.zbMATHCrossRefGoogle Scholar
  17. [17]
    R.P. Stanley, Hilbert functions of graded algebras, Adv. Math. 28(1978), 57–83.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    R.P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Am. Math. Soc. (N.S.) 1 (1979), 475–511.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    H. Weyl, The classical groups, Princeton Univ. Press, 1946.Google Scholar
  20. [20]
    H. Weyl, Zur Darstellungstheorie und Invariantenabzählung der projektiven, der Komplex-und der Drehungs gruppe, Ges. Abh. Bd. III, 1–25, Springer-Verlag, 1968.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • T. A. Springer
    • 1
  1. 1.Mathematisch Instituut der RÿksuniversiteitUtrecht

Personalised recommendations