Skip to main content

Convergence rates of "thin plate" smoothing splines wihen the data are noisy

Preliminary report

  • Conference paper
  • First Online:
Smoothing Techniques for Curve Estimation

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 757))

Abstract

We study the use of "thin plate" smoothing splines for smoothing noisy d dimensional data. The model is

$$z_i = u(t_i ) + \varepsilon _i ,i = 1,2,...,n,$$

where u is a real valued function on a closed, bounded subset Ω of Euclidean d-space and the εi are random variables satisfying Eεi=0, Eεiεj2, i=j, =0, i≠j, tiεΩ. The zi are observed. It is desired to estimate u, given zl, ..., zn. u is only assumed to be "smooth", more precisely we assume that u is in the Sobolev space H m(Ω) of functions with partial derivatives up to order m in L 2(Ω), with m>d/2. u is estimated by un,m,λ, the restriction to Ω of ũn,m,λ, where ũn,m,λ is the solution to: Find ũ (in an appropriate space of functions on Rd) to minimize

$$\frac{1}{n}\sum\limits_{i = 1}^n {(\tilde u(t_i ) - z_i ) + \lambda _i } ,\sum\limits_{1,...,i_m = 1_R d}^d {(\frac{{\partial ^m \tilde u}}{{\partial x_{i_1 } \partial x_{i_2 } ...\partial x_{i_m } }})^2 dx_1 ,dx_2 ,...,dx_d }$$

This minimization problem is known to have a solution for λ>0, m>d/2, n≥M=( m+d−1d ), provided the tl, ..., tn are "unisolvent". We consider the integrated mean square error

$$R(\lambda ) = \frac{1}{{\left| \Omega \right|}}\int\limits_\Omega {(u_{n,m,\lambda } (t) - u(t))^2 dt,} \left| \Omega \right| = \int\limits_\Omega {dt} ,$$

, and ER(λ), as {ti} ni=l become dense in Ω. An estimate of λ which asymptotically minimizes ER(λ) can be obtained by the method of generalized cross-validation. In this paper we give plausible arguments and numerical evidence supporting the following conjectures:

Suppose u ε H m(Ω). Then

$$\mathop {\min }\limits_\lambda ER(\lambda ) = 0(n^{{{ - 2m} \mathord{\left/{\vphantom {{ - 2m} {(2m + d)}}} \right.\kern-\nulldelimiterspace} {(2m + d)}}} )$$

.

Suppose uεH 2m(Ω) and certain other conditions are satisfied. Then

$$minER(\lambda ) = 0(n^{{{ - 4m} \mathord{\left/{\vphantom {{ - 4m} {(4m + d)}}} \right.\kern-\nulldelimiterspace} {(4m + d)}}} )$$

.

Research supported by the Office of Naval Research under Grant No. N00014-77-C-0675.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anselone, P.M., and Laurent, P.J. (1968). A general method for the construction of interpolating or smoothing spline-functions, Numer. Math. 12, 66–82.

    Article  MathSciNet  MATH  Google Scholar 

  • Aubin, Jean-Pierre (1972). Approximation of Elliptic Boundary Value Problems, Wiley-Interscience.

    Google Scholar 

  • Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics, Vol. I, Interscience.

    Google Scholar 

  • Craven, P., and Wahba, G. (1979). Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math. 31, 377–403.

    Article  MathSciNet  MATH  Google Scholar 

  • Duchon, Jean (1976a). Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. R.A.I.R.O. Analyse Numerique, 10, 12, pp.5–12.

    MathSciNet  Google Scholar 

  • Duchon, Jean (1976b). Fonctions spline du type "Plaque mince" en dimension 2. No. 231. Seminaire d’analyse numerique, Mathematiques Appliqueés, Université Scientifique et Medicale de Grenoble.

    Google Scholar 

  • Duchon, Jean, (1977). Fonctions-spline a energie invariante par rotation, R.R.#27, Mathematiques Appliqueés, Université Scientifique et Medicale de Grenoble.

    Google Scholar 

  • Golub, G., Heath, M., and Wahba, G. (1977). Generalized cross-validation as a method for choosing a good ridge parameter, University of Wisconsin-Madison, Department of Statistics Technical Report #491, to appear, Technometrics.

    Google Scholar 

  • Meinguet, Jean, (1978). Multivariate interpolation at arbitrary points made simple. Report No. 118, Institute de Mathematique Pure et Appliqueé, Université Catholique de Louvain, to appear, ZAMP.

    Google Scholar 

  • Meinguet, Jean, (1979). An intrinsic approach to multivariate spline interpolation at arbitrary points. To appear in the Proceedings of the NATO Advanced Study Institute on Polynomial and Spline Approximation, Calgary 1978, B. Sahney, Ed.

    Google Scholar 

  • Paihua, Montes, L. (1977). Methodes numeriques pour l’obtention de fonctions-spline du type plaque mince en dimension 2. Seminaire d’Analyse Numerique No. 273, Mathematiques Appliqueés, Université Scientifique et Medicale de Grenoble.

    Google Scholar 

  • Paihua Montes, Luis, (1978). Quelques methodes numeriques pour le calcul de fonctions splines a une et plusiers variables. Thesis, Analyse Numerique Université Scientifique et Medicale de Grenoble.

    Google Scholar 

  • Stone, Charles (1978). Optimal rates of convergence for non-parametric estimators (manuscript).

    Google Scholar 

  • Wahba, G. (1975). Smoothing noisy data with spline functions, Numer. Math., 24, 383–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Wahba, G. (1977). Discussion to C. J. Stone Consistent nonparametric regression, Ann. Statist. 5, 637–640.

    Google Scholar 

  • Wahba, Grace (1979). How to smooth curves and surfaces with splines and cross-validation. University of Wisconsin-Madison, Department of Statistics TR#555.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Th. Gasser M. Rosenblatt

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Wahba, G. (1979). Convergence rates of "thin plate" smoothing splines wihen the data are noisy. In: Gasser, T., Rosenblatt, M. (eds) Smoothing Techniques for Curve Estimation. Lecture Notes in Mathematics, vol 757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098499

Download citation

  • DOI: https://doi.org/10.1007/BFb0098499

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09706-8

  • Online ISBN: 978-3-540-38475-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics