Conclusions and discussion of remaining problems

  • Freddy Dumortier
  • Robert Roussarie
  • Jorge Sotomayor
  • Henryk Żaładek
Part II: Rescalings And Analytic Treatment
Part of the Lecture Notes in Mathematics book series (LNM, volume 1480)


Vector Field Phase Portrait Closed Orbit Saddle Connection Elliptic Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    V. Arnol'd Chapitres supplémentaires de la théorie des equations différentielles ordinaires, Ed. Mir, Moscow, 1980Google Scholar
  2. [A2]
    V. Arnol'd Lectures on bifurcations in versal families, Russian Math. Surveys V, 26, 1971Google Scholar
  3. [A.L.]
    A. Andronov, E. Leontovich, et al. Theory of bifurcations of Dynamical Systems on a Plane, I.P.S.T., Jerusalem, 1971Google Scholar
  4. [B.K.K.]
    A.D. Basikin, Yu. Kuznietzov, A.I. Khibnik Bifurcational diagrams of dynamical systems on the plane, Computer Center Acad. Sciences URSS, Puschino, 1985Google Scholar
  5. [B]
    R. Bogdanov-Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues. (R) Seminar Petrovski, 1976, (E) Selecta Mathematica Sovietica, vol. 1, 4, 1981, 389–421.zbMATHGoogle Scholar
  6. [B]
    -Bifurcation of a limit cycle for a family of vector fields on the plane, (R) Seminar Petrovski, 1976, (E) Selecta Math. Sov., vol. 1, 4, 1981, 373–388.zbMATHGoogle Scholar
  7. [D]
    F. Dumortier-Singularities of vector fields on the plane, J. Diff. Equat., vol 23, 1 (1977), 53–106MathSciNetCrossRefzbMATHGoogle Scholar
  8. [D]
    -Singularities of vector fields. Monografias de Matemática 32 IMPA, Rio de Janeiro, 1978zbMATHGoogle Scholar
  9. [D.G.]
    G. Dangelmayer, J. Guckenheimer On a four parameter family of planar vector fields, Arch. Rat. Mech. Anal., 97, 1987, 321–352.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [D.R.]
    F. Dumortier, C. Rousseau Cubic Liénard equations with linear damping, Nonlinearity, to appear.Google Scholar
  11. [D.R.S.]
    F. Dumortier, R. Roussarie, J. Sotomayor Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case. Ergodic theory and dynam. systems, 7, 1987, 375–413MathSciNetzbMATHGoogle Scholar
  12. [G.H.]
    J. Guckenheimer, P. Holmes Non-linear oscillations, dynamical systems, and bifurcations of vector fields, Appl. Math. Sc. 42, Springer-Verlag, 1983Google Scholar
  13. [H.C.]
    J.K. Hale, S.-N. Chow Methods of bifurcation theory, Springer-Verlag, Berlin, 1982zbMATHGoogle Scholar
  14. [R]
    R. Roussarie On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Mat., Vol. 17, 2, 1986, 67–101MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Sc]
    S. Schecter The Saddle-node separatrix-loop bifurcation, SIAM Journ. Math. Anal., Vol. 18, 4, 1987, 1142–56.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Se]
    A. Seidenberg A New decision method for elementary algebra, Ann. of Math. 60, 1954, 365–374MathSciNetCrossRefzbMATHGoogle Scholar
  17. [S]
    J. Sotomayor Generic one-parameter families of vector fields on two-dimensional manifolds, Publ. Math. I.H.E.S., Vol. 43, 1974Google Scholar
  18. [S2]
    J. Sotomayor Curvas definidas por equações diferenciais no plano, IMPA, Rio de Janeiro, 1981Google Scholar
  19. [St]
    D. Stowe Linearization in two dimensions, Journ. of Diff. Equat. 63, 1986, 183–226MathSciNetCrossRefzbMATHGoogle Scholar
  20. [T]
    F. Takens Unfoldings of certain singularities of vector fields. Generalized Hopf bifurcations. Journ. of Diff. Equat. 14, 1973, 476–493MathSciNetCrossRefzbMATHGoogle Scholar
  21. [T2]
    F. Takens Forced oscillations and bifurcations. In: Applications of Global Analysis I, Communications of Math. Inst. Rijksuniv. Utrecht, 3, 1974Google Scholar
  22. [Te]
    M.A. Teixeira Generic bifurcation in manifolds with boundary, J. Diff. Equat., vol. 25, 1, 65–89, 1977MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Z1]
    H. Zoladek Abelian integrals in unfoldings of cod. 3 singular planar vector fields, Part II. The saddle and elliptic case. This volumeGoogle Scholar
  24. [Z2]
    H. Zoladek Abelian integrals in unfoldings of cod. 3 singular planar vector fields, Part III. The focus case. This volumeGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Freddy Dumortier
  • Robert Roussarie
  • Jorge Sotomayor
  • Henryk Żaładek

There are no affiliations available

Personalised recommendations