Advertisement

Rational curves on Fano varieties

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1515)

Keywords

Vector Bundle Rational Curf Pezzo Surface Fano Variety Fano Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Batyrev82]
    V. V. Batyrev, Boundedness of the degree of multidimensional Fano varieties, Vestnik MGU (1982), 22–27.Google Scholar
  2. [Campana91]
    F. Campana, Une version géometrique généralisée du théorèmes du produit de Nadel (preprint).Google Scholar
  3. [Grothendieck62]
    A. Grothendieck, Fondéments de la Géométrie Algébrique, Sec. Math. Paris, 1962.Google Scholar
  4. [Iskovskikh83]
    V. A. Iskovskikh, Algebraic Threefolds with Special Regard to the Problem of Rationality, Proc. ICM, Warszawa, 1983, pp. 733–746.Google Scholar
  5. [Kollár-Matsusaka83]
    J. Kollár-T. Matsusaka, Riemann-Roch type inequalities, Amer. J. Math. 105 (1983), 229–252.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Matsusaka70]
    T. Matsusaka, On canonically polarised varieties (II), Amer. J. Math. 92 (1970), 283–292.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Matsusaka72]
    T. Matsusaka, Polarised varieties with a given Hilbert polynomial, Amer. J. Math. 94 (1972), 1027–1077.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Mori79]
    S. Mori, Projective Manifolds with Ample Tangent Bundles, Ann. of Math. 110 (1979), 593–606.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Mori83]
    S. Mori, Cone of Curves and Fano 3-folds, Proc. ICM, Warszawa, 1983, pp. 747–752.Google Scholar
  10. [Nadel90]
    A. M. Nadel, A finiteness theorem for Fano 4-folds (preprint).Google Scholar
  11. [Nadel91]
    A. M. Nadel, The boundedness of degree of Fano varieties with Picard number one (preprint).Google Scholar
  12. [SGAI]
    Revêtements Etales et Groupes Fondamental, Springer Lecture Notes vol. 224, 1971.Google Scholar
  13. [Tsuji89]
    H. Tsuji, Boundedness of the degree of Fano manifolds with b 2=1 (preprint).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  1. 1.University of UtahSalt Lake CityUSA
  2. 2.Rikkyo UniversityTokyoJapan
  3. 3.RIMS, Kyoto UniversityKyotoJapan

Personalised recommendations