Skip to main content

Filtering capability of neural networks from the developing mammalian hippocampus

  • Neural Modeling (Biophysical and Structural Models)
  • Conference paper
  • First Online:
  • 512 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Abstract

Synchronous population activity is present in neuronal networks in both normal conditions1–3 and pathological states such as epilepsy4–8. During early development of the hippocampus, similar bursts are also recorded2,3,9. These spontaneous bursts are generated by the synchronized action of interneurons acting as excitatory cells9. Nevertheless, the mechanism leading to synchronization still remains unclear. Here, we investigate the conditions in which synchronization arises in developing hippocampal networks. Using simultaneous recordings, we demonstrate that bursts result from a local cooperation of active cells within an integration period prior to their onset. During this interval, an increase in the number of excitatory postsynaptic potentials (EPSPs) takes place. By comparing EPSP frequency with burst ocutience we show that bursting takes place in a non-linear, allor-none fashion. This non-linear dependency with EPSP frequency is characterized by a threshold from which synchronized bursting arises (17 Hz) which can be reproduced by extracellular stimulation. We propose that this threshold is a property of the network, and determines the critical frequency at which cellular populations become phase locked. This frequency-threshold mechanism endows hippocampal networks with high-pass filtering behavior. We discuss its functional implication in neuronal computation10, stimulus encoding11–13 and in pathological conditions such as epilepsy5,14.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meister, M., Wong, R.O.L., Baylor, D.A. and Shatz, C.J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991)

    Article  Google Scholar 

  2. Ben-Ari, Y., Cherubini, E., Corradetti, R. & Gaiarsa, J.L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. 416, 303–325 (1989)

    Article  Google Scholar 

  3. Menendez de la Prida, L; Bolea, S & Sanchez-Andres, J. V. Origin of the synchronized network activity in the rabbit developing hippocampus. Eur. J. Neurosci (In press).

    Google Scholar 

  4. Schwartzkroin, P.A. & Price, D.A. Cellular and field potential properties of epileptogenic hippocampal slices, Brain Res 147(1), 117–130 (1978).

    Article  Google Scholar 

  5. Traub, R.D. & Wong, K.S. Cellular mechanism of neuronal synchronization in epilepsy. Science 216, 745–747 (1982).

    Article  Google Scholar 

  6. Wong, R.K.S. & Traub, R.D. Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2-CA3 region. J. Neurophysiol. 49(2) 442–458 (1983)

    Google Scholar 

  7. Traub, R.D., Miles, R. & Wong, R.K.S. Model of the origin of rhythmic population oscillations in the hippocampal slice. Science 243, 1319–1325, (1989).

    Article  Google Scholar 

  8. Miles, R., Traub, R.D. & Wong, R.K.S. Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus. J. Neurophysiol 60(4), 1481–1494 (1988).

    Google Scholar 

  9. Cherubini, E., Gaiarsa, J.L. & Ben-Ari, Y. GABA: an excitatory neurotransmitter in early postnatal life. TINS 14, 615–519 (1991).

    Google Scholar 

  10. Grossberg, S. Nonlinear neural networks: Principles, mechanisms and architectures. Neural Networks 1, 17–61 (1988).

    Article  Google Scholar 

  11. Gray, C.M. & Singer, W. Stimulus specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad. Sci USA 91, 669–674 (1989).

    Google Scholar 

  12. Laurent, G. & Davidowitz, H. Encoding of olfactory information with oscillating neural assemblies. Science 265, 1872–1875 (1994)

    Article  Google Scholar 

  13. Soltesz, I. & Deschenes, M. Low-and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J. Neurophysiol, 70, 97–116 (1993).

    Google Scholar 

  14. Chamberlin, N.L., Traub, R.D. & Dingledine, R. Role of EPSPs in initiation of spontaneous synchronized burst firing in rat hippocampal neurons bathed in high potassium. J. Neurophysiol 64 (3) 1000–1008 (1990)

    Google Scholar 

  15. Miles, R., Wong, R.K.S & Traub, R.D. Synchronized afterdischarges in the hippocampus: contribution of local synaptic interactions. Neuroscience 12, 1179–1189 (1984).

    Article  Google Scholar 

  16. Bolea, S, Menendez de la Prida, L. & Sanchez-Andres, J.V. GABAA sensitivity along early postnatal development in rabbit. J. Physiol. 493.P., 30S (1996)

    Google Scholar 

  17. Khazipov, R., Leinekugel, X., Khalilov, I., Gaiarsa, J.L. and Ben-Ari, Y. Synchronization of GABAergic interneuronal networks in CA3 subfield of neonatal rat hippocampal slices. J. Physiol 498, 763–772 (1997).

    Article  Google Scholar 

  18. Menendez de la Prida, L, Bolea, S & Sanchez-Andres, J.V. Analytical characterization of spontaneous activity evolution during hippocampal development in the rabbit. Neurosci. Lett 218, 185–187 (1996).

    Article  Google Scholar 

  19. Menendez de la Prida, L, Stollenwerk, N. & Sanchez-Andres, J.V. Bursting as a source for predictability in biological neural network activity. Physica D, 110, 323–331 (1997).

    Article  MATH  Google Scholar 

  20. Treves, A. & Rolls, E.T. Computational analysis of the role of the hippocampus in memory. Hippocampus. 4(3), 374–391 (1994)

    Article  Google Scholar 

  21. Lisman, J.E.. Burst as a unit of neural information: making unreliable synapses reliable. TINS 20, 38–43 (1997).

    Google Scholar 

  22. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O. & Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  Google Scholar 

  23. Miles R. & Wong, R. K. S. Single neurones can initiate sychronized population discharge in the hippocampus. Nature 306, 371–373 (1983).

    Article  Google Scholar 

  24. Scharfman, H.E. Dentate hilar cells with dendrites in the molecular layer have lower threshold for synaptic activation by perforant path than granule cells. J. Neurosci. 11(6) 1660–1673 (1991).

    Google Scholar 

  25. Lacaille, J.C. Mueller, A.L., Dennis D.K. & Schwartzkroin, P.A. Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J. Neurosci. 7(7), 1979–1993 (1987)

    Google Scholar 

  26. Wong, R.K.S. & Prince, D.A. Afterpotential generation in hippocampal pyramidal cells. J. Neurophysiol. 45(1):86–97 (1981).

    Google Scholar 

  27. Schwartzkroin, P.A., Moshé, S.L. Noebels, J.L. & Swann, J.W. in Brain Development and Epilepsy. (Oxford Univ. Press, 1995).

    Google Scholar 

  28. Stopfer, M., Bhagavan, S., Smith, B.H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70–74 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de la Prida, L.M., Sanchez-Andres, J.V. (1999). Filtering capability of neural networks from the developing mammalian hippocampus. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098163

Download citation

  • DOI: https://doi.org/10.1007/BFb0098163

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics