Skip to main content

Stochastic colored petri net models for rainbow optical networks

  • Performance Analysis with Stochastic Petri Nets
  • Chapter
  • First Online:
Application of Petri Nets to Communication Networks

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1605))

Abstract

In this paper, Stochastic Well-formed Nets (SWN) are used to model an optical multi-receiver system and study its performance. A novel approach to resolving packet contention (loss), occurring in optical multi-receiver nodes when the number of packets concurrently reaching the node exceeds the number of available receivers, is presented: it is based on the combined use of fiber delay lines and photonic switches, to temporarily store (delay) optical packets prior to reception. In order to effectively delay the contending packets and improve the multi-receiver throughput three novel control strategies are presented and their performance analyzed using SWN models. Techniques specific to this formalism are applied to cope with the state space explosion problem. A further optimization is achieved by altering the models in such a way that exact performance results can be obtained with reduced computational complexity.

A. Fumagalli worked under the support of the Italian CNR, through Progetto Finalizzato Trasporti 2 and of the Italian MURST. G. Franceschinis was supported by the Italian MURST under the 40% project. A. Silinguelli was supported by CSELT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEEE Network, 6 (2), March 1992. Special issue on Report on Gigabit Networking.

    Google Scholar 

  2. IEEE Communications Magazine, 30(4), March 1992. Special issue on Gigabit Networks.

    Google Scholar 

  3. Proceedings of Gigabit Networks: Emerging Commercial Applications & Opportunities, Washington, DC, July 1992.

    Google Scholar 

  4. IEEE/OSA Journal of Lightwave Technology, jointly with IEEE Journal on Selected Areas in Communications, 14(6), June 1996.

    Google Scholar 

  5. IEEE Journal on Selected Areas in Communications, jointly with IEEE/OSA Journal of Lightwave Technology, 14(5), June 1996.

    Google Scholar 

  6. Silinguelli A. Tecniche di ricezione basate su linee di ritardo ottiche commutate. Master's thesis, Politecnico di Torino, February 1996.

    Google Scholar 

  7. M. Ajmone Marsan, G. Balbo, and G. Conte. A class of generalized stochastic Petri nets for the performance analysis of multiprocessor systems. ACM Transactions on Computer Systems, 2(1), May 1984.

    Google Scholar 

  8. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with Generalized Stochastic Petri Nets. J. Wiley, 1995.

    Google Scholar 

  9. M. Ajmone Marsan, G. Balbo, and K.S. Trivedi, editors. Proc. Intern. Workshop on Timed Petri Nets, Torino, Italy, July 1985. IEEE-CS Press.

    Google Scholar 

  10. M. Ajmone Marsan and R. Gaeta. GSPN models for ATM networks. In Proc. 7 th Int. Workshop on Petri Nets and Performance Models, St. Malo', France, June 1997. IEEE-CS Press.

    Google Scholar 

  11. A. Blakemore. The cost of eliminating vanishing markings from generalized stochastic Petri nets. In Proc. Int. Workshop on Petri Nets and Performance Models, Kyoto, Japan, December 1989. IEEE-CS Press.

    Google Scholar 

  12. C. A. Brackett, Dense wavelength division multiplexing networks: Principles and applications. IEEE Journal on Selected Areas in Communications, 8(6):948–964, August 1990.

    Article  Google Scholar 

  13. M.-S. Chen, N. R. Dono, and R. Ramaswami. A media-access protocol for packet-switched wavelength division multiaccess metropolitan area networks. IEEE Journal on Selected Areas in Communications, 8(6):1048–1057, August, 1990.

    Article  Google Scholar 

  14. G. Chiola, S. Donatelli, and G. Franceschinis. GSPN versus SPN: what is the actual role of immediate transitions? In Proc. 4 th Intern. Workshop on Petri Nets and Performance Models, pages 20–31, Melbourne, Australia, December 1991. IEEE-CS Press.

    Google Scholar 

  15. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed coloured nets for symmetric modelling applications. IEEE Transactions on Computers, 42(11), November 1993.

    Google Scholar 

  16. G. Chiola and G. Franceschinis. Colored GSPN models and automatic symmetry detection. In Proc. 3 rd Intern. Workshop on Petri Nets and Performance Models, Kyoto, Japan, December 1989. IEEE-CS Press.

    Google Scholar 

  17. G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphical Editor and Analyzer for Timed and Stochastic Petri Nets. Performance Evaluation, special issue on Performance Modeling Tools, 24(1&2):47–68, November 1995.

    MATH  Google Scholar 

  18. I. Chlamtac. Rational, directions and issues surrounding high speed computer networks. IEEE Proceedings, 78(1):94–120, January 1989.

    Article  Google Scholar 

  19. I. Chlamtac and A. Fumagalli. QUADRO-Star: High performance optical WDM star networks. In IEEE Globecom'91, Phoenix, Arizona, 1991.

    Google Scholar 

  20. I. Chlamtac and A. Fumagalli. Quadro: An all-optical solution for resource contentions in packet switching networks. Journal on Computer Networks and ISDN Systems, 1992.

    Google Scholar 

  21. I. Chlamtac, A. Fumagalli, L.G. Kazovsky, P. Melman, W. H. Nelson, P. Poggiolini, M. Cerisola, A. N. M. Choudhury, T. K. Fong, R. T. Hofmeister, C.-L. Lu, A. Mekkittikul, D. J. M. Sabido IX, C.-J. Suh, and E. W. M. Wong. CORD: COntention Resolution by Delay lines. IEEE Journal on Selected Areas in Communications and IEEE Journal of Lightwave Technology, 14(5), June 1996.

    Google Scholar 

  22. G. Ciardo. Petri nets with marking dependent arc cardinality: Properties and analysis. In Proc. 15 th Intern. Conference on Applications and Theory of Petri Nets, number 815 in LNCS, Zaragoza, Spain, 1994. Springer-Verlag.

    Google Scholar 

  23. N. R. Dono, P. E. Green, K. Liu, R. Ramaswami, and F. F.-K. Tong. A wavelength division multiple access network for computer communication. IEEE Journal on Selected Areas in Communications, 8(6):983–993, August 1990.

    Article  Google Scholar 

  24. G. Florin and S. Natkin. Les reseaux de Petri stochastiques. Technique et Science Informatiques, 4(1), February 1985.

    Google Scholar 

  25. A. Ganz and I. Chlamtac. Path allocation access control in fiber optic communication systems. IEEE Transactions on Computers, c-38(10):1372–1382, October 1989.

    Article  Google Scholar 

  26. B. S. Glance and O. Scaramucci. High-performance dense FDM coherent optical network. IEEE Journal on Selected Areas in Communications, 8(6):1043–1047, August 1990.

    Article  Google Scholar 

  27. P. E. Green. The future of fiber-optic computer networks. IEEE Computer, 24(9):78–87. September 1991.

    Google Scholar 

  28. P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen. Towards reachability trees for high-level Petri nets. In G. Rozenberg, editor, Advances on Petri Nets '84, volume 188 of LNCS, pages 215–233. Springer Verlag, 1984.

    Google Scholar 

  29. K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use. Volume 1 & 2. Springer Verlag, 1995.

    Google Scholar 

  30. K. Jensen and G. Rozenberg, editors. High-Level Petri Nets. Theory and Application. Springer Verlag, 1991.

    Google Scholar 

  31. J. F. Meyer, A. Movaghar, and W. H. Sanders. Stochastic activity networks: Structure, behavior, and application. In Proc. Intern. Workshop on Timed Petri Nets, pages 106–115, Torino, Italy, July 1985.

    Google Scholar 

  32. M. K. Molloy. On the Integration of Delay and Throughput Measures in Distributed Processing Models. PhD thesis, UCLA, Los Angeles, CA, 1981. Ph.D. Thesis.

    Google Scholar 

  33. B. Mukherjee. WDM-based local lightwave networks part i: Single-hop systems. IEEE Network, 6(3):12–27, May 1992.

    Article  Google Scholar 

  34. B. Mukherjee. WDM-based local lightwave networks part ii: Multi-hop systems. IEEE Network, 6(4):20–32, July 1992.

    Article  Google Scholar 

  35. E. Nussbaum. Communication network needs and technologies—a place for photonic switching. IEEE Journal on Selected Areas in Communications, 6(7):1036–1043, August 1988.

    Article  Google Scholar 

  36. J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

    MATH  Google Scholar 

  37. W. H. Sanders and J. F. Meyer. Reduced base model construction methods for stochastic activity networks. In Proc. 3 rd Intern. Workshop on Petri Nets and Performance Models, Kyoto, Japan, December 1989. IEEE-CS Press.

    Google Scholar 

  38. F. J. W. Symons. Modeling and Analysis of Communication Protocols Using Numerical Petri Nets. PhD thesis, University of Essex, May 1978.

    Google Scholar 

  39. H. Toba, K. Oda, K. Nakanishi, N. Shibata, K. Nosu, N. Takato, and M. Fukuda. 100-channel optical FDM transmission/distribution at 622 Mb/s over 50 Km. In Proc. OFC'90, San Francisco, CA, 1990.

    Google Scholar 

  40. E. W. M. Wong, A. Fumagalli, and I. Chlamtac. Performance evaluation of CROWNs: WDM multi-ring topologies. In Proc. ICC'95, Seattle, WA, June 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jonathan Billington Michel Diaz Grzegorz Rozenberg

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franceschinis, G., Fumagalli, A., Silinguelli, A. (1999). Stochastic colored petri net models for rainbow optical networks. In: Billington, J., Diaz, M., Rozenberg, G. (eds) Application of Petri Nets to Communication Networks. Lecture Notes in Computer Science, vol 1605. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0097780

Download citation

  • DOI: https://doi.org/10.1007/BFb0097780

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65870-2

  • Online ISBN: 978-3-540-48911-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics