Advertisement

On spectral analysis in locally compact groups

  • Yitzhak Weit
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 781)

Keywords

Homogeneous Space Compact Group Closed Subspace Multiplier Function Positive Definite Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Choquet, J. Deny, Sur l'équation de convolution μ=μ * σ, C.R. Acad. Sci. Paris, 250 (1960), 799–801.MathSciNetzbMATHGoogle Scholar
  2. [2]
    L. Elie and A. Rougi, Functions harmoniques sur certains groupes resolubles, C.R. Acad. Sci. Paris, Serie A (1975), 377–379.Google Scholar
  3. [3]
    H. Furstenberg, A Poisson formula for semi-simple Lie groups. Ann. of Math. 77 (1963), 335–386.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H. Furstenberg, Translation — invariant cones of functions on semi-simple Lie groups, Bull. Amer. Math. Soc. 71 (1965), 271–326.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Gatesoupe, Caractérisation locale de la sous algèbre fermée des functions radiales de L1(IRn), Ann. Inst. Fourier, Grenoble 17 (1967) 93–197.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    C.S. Herz, Spectral synthesis for the circle, Ann. of Math. 68 (1958) 709–712.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    H. Leptin, Ideal theory in group algebras of locally compact groups. Inventiones Math. 31 (1976) 259–278.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Mueller-Roemer, A tauberian group algebra, Proc. Amer. Math. Soc. 37 (1973) 163–166.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Y. Weit, On Wiener's tauberian theorem for a non-commutative group, Ph.D. Dissertation, Hebrew University of Jerusalem, January 1977 (Hebrew).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Yitzhak Weit
    • 1
  1. 1.University of HaifaHaifaIsrael

Personalised recommendations