Advertisement

Symmetry (or simple modules) of some banach algebras

  • Detlev Poguntke
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 781)

Keywords

Compact Group Banach Algebra Group Algebra Simple Module Left Translation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.W. Jenkins, Nonsymmetric group algebras, Studia Math. 45 (1973), 295–207.MathSciNetzbMATHGoogle Scholar
  2. [2]
    J.W. Jenkins, Growth of Connected Locally Compact Groups, J.Funct. Anal. 12 (1973), 113–127.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. Leptin, Verallgemeinerte L1-Algebren und projektive Darstellungen lokalkompakter Gruppen, Inventiones math. 3 (1967), 257–281, 4 (1967), 68–86.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H. Leptin, Darstellungen verallgemeinerter L1-Algebren II in Lectures on Operator Algebras, Lecture Notes in Mathematics 247 (1972), 251–307.MathSciNetCrossRefGoogle Scholar
  5. [5]
    H. Leptin, Symmetrie in Banachschen Algebren, Arch. d. Math. 27 (1976), 394–400.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Leptin und D. Poguntke, Symmetry and nonsymmetry for locally compact groups, to appear in J. Funct. Anal.Google Scholar
  7. [7]
    J. Ludwig, A class of symmetric and a class of Wiener group algebras, to appear in J. Funct. Anal.Google Scholar
  8. [8]
    D. Poguntke, Nilpotente Liesche Gruppen haben symmetrische Gruppenalgebren, Math. Ann. 227 (1977), 51–59.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    D. Poguntke, Nichtsymmetrische sechsdimensionale Liesche Gruppen, to appear in J. reine angew. Math.Google Scholar
  10. [10]
    R. Gangolli, On the symmetry of L1-algebras of locally compact motion groups and the Wiener Tauberian theorem. J. Funct. Anal. 25 (1977), 244–252.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Detlev Poguntke
    • 1
  1. 1.Fakultät für Mathematik der UniversitätBielefeld

Personalised recommendations