Advertisement

Distance and volume decreasing theorems for a family of harmonic mappings of riemannian manifolds

  • N. C. Petridis
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 781)

Keywords

Riemannian Manifold Harmonic Mapping Sectional Curvature Quasiconformal Mapping Complete Riemannian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    S.S. Chern, Characteristic classes of hermitian manifolds. Ann. of Math. 47 (1946) 85–121.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2].
    S.S. Chern and S.I. Goldberg, On volume decreasing property of a class of real harmonic mappings. Am.J.Math. 97 (1975) 133–147.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3].
    J. Eells, Jr. and G.H. Sampson, Harmonic mappings of Riemmanian manifolds.Google Scholar
  4. [4].
    S.I. Goldberg, T. Ishihara and N.C. Petridis, Mappings of bounded dilatation of Riemannian manifolds. J.Diff.Geom. 10 (1975) 619–630.MathSciNetzbMATHGoogle Scholar
  5. [5].
    S.I. goldberg and T. Ishihara, Harmonic quasiconformal mappings of Riemmanian manifolds. Bull. Am.Math.Soc. 80 (1974) 562–566.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6].
    S.I. Goldberg and Zvi Har'El, A general Schwarz lemma for Riemannian manifolds. To appear.Google Scholar
  7. [7].
    S. Kobayashi, Hyperbole manifolds and holomorphic mappings. M. Dekker (1970).Google Scholar
  8. [8].
    A. Lichnerowicz, Applications harmoniques et variétés Kahlériennes. Symposia Mathematica 3, Bologna (1970) 341–402.Google Scholar
  9. [9].
    N.C. Petridis, A generalization of the little theorem of Picard. Proc. Amer. Math. Soc. 61 (1976) 265–271.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10].
    S.T. Yau, A general Schwarz lemma for Kahler manifolds. Am.J. of Math. v. 100Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • N. C. Petridis
    • 1
    • 2
  1. 1.East Illin. UniversityCharlestonUSA
  2. 2.University of CreteIraklion CreteGreece

Personalised recommendations