Harmonic analysis based on crossed product algebras and motion groups

  • David Gurarie
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 781)


Irreducible Representation Primary Ideal Dual Space Compact Group Motion Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    H. Bateman, A. Erdelyi, Higher trancedental functions, 6.II McGraw-Hill, 1953.Google Scholar
  2. [2].
    Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956) 1–66.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3].
    J.M.G. Fell, Non unitary dual space of groups, Acta Math. 114 (1965), 267–310.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4].
    J.M.G. Fell, The dual space of Banach algebras, Trans.Amer. Math.Soc. 114 (1965), 227–250.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5].
    R. Gangolli, On the symmetry of L1-algebras of locally compact motion groups and Wirner Tauberian theorem, J. Funct. Anal. 25 (1975), 224–252.MathSciNetGoogle Scholar
  6. [6].
    R. Godement, A theory of spherical functions, I, Trans. Amer. Math. SAc. 73 (1952).Google Scholar
  7. [7].
    C.S. Herz, Spectral synthesis for the circle, Ann.Math. 68 (1958), 709–712.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8].
    E. Hewitt, K.A. Ross, Abstract harmonic analysis, V. II, Springer Verlag, 1970.Google Scholar
  9. [9].
    H. Leptin, Verallgemeinerte L1-Algebren und projektive Darstellungen lokal kompakter Gruppen, Inventiones Math., 3 (1967), 257–281; 4 (1967), 68–86.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10].
    H. Leptin, Ideal theory in group algebras of locally compact groups, Invent. Math. 31 (1976), 259–278.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11].
    H. Leptin, D. Poguntke, Symmetry and nonsymmetry for locally compact groups, Preprint.Google Scholar
  12. [12].
    J. Ludvig, A class of symmetric and a class of Wiener group algebras. Preprint.Google Scholar
  13. [13].
    G.W. Mackey, Inducted representations of locally compact groups. I. Ann. of Math. 55 (1952), 101–139.MathSciNetCrossRefGoogle Scholar
  14. [14].
    L.V. Rosenblum, A.V. Rosenblum, On matrix elements of irreducible unitary representations of Euclidean motion group M(n). Russian Math. Survey (Uspechi) 29 (1974), N.4 (Russian).Google Scholar
  15. [15].
    M. Takesaki, Covariant representations of C-algebras and their locally compact groups, Acta Math. 119 (1967), 273–303.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16].
    N.T. Varopoulos, Spectral synthesis on spheres, Proc. Comb. Phil. Soc. (1966), 62, 379–387.MathSciNetCrossRefGoogle Scholar
  17. [17].
    A. Vretblat, Spectral analysis in weighted L1-spaces on R, Ark. f. Math. 11, 1973, 109–138.CrossRefGoogle Scholar
  18. [18].
    D.P. Zelobenko, Compact Lie group and their representations, AMS, Providence 1973.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • David Gurarie
    • 1
  1. 1.Institute of MathematicsThe Hebrew University of JerusalemIsrael

Personalised recommendations