Maximal function characterization of Hp for the bidisc

  • R. F. Gundy
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 781)


Maximal Function Biharmonic Function Hardy Class Dimensional Lebesgue Measure Dimensional Brownian Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Burkholder, D.L., Gundy, R.F., Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970) 249–304.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2].
    Burkholder, D.L., Gundy, R.F., and Silverstein, M.L. A maximal function characterization of the Class Hp, Trans. Amer. Math. Soc. 157 (1971), 137–153.MathSciNetzbMATHGoogle Scholar
  3. [3].
    Fefferman, C., Stein, E.M., Hp spaces of several variables, Acta Math. 129 (1972) 137–193.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4].
    Gundy, R.F. Inégalitiés pour martingales à un et deux indices: L'espace Hp. L'Ecole d'Eté de St. Flour, 1978, Lecture Notes, Springer-Verlag. To appear.Google Scholar
  5. [5].
    Gundy, R.F., Stein, E.M. Hp theory for the polydisc, Proc.Nat. Acad. Sciences, USA, to appear.Google Scholar
  6. [6].
    M.P. Malliavin and P. Malliavin, Intégrales de Lusin-Calderón pour les fonctions biharmoniques, Bull. Sci. Math. 101 (1977), 357–384.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. F. Gundy
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations