Skip to main content

The stochastic evolution of infinite systems of interacting particles

  • Conference paper
  • First Online:
Ecole d’Eté de Probabilités de Saint-Flour VI-1976

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 598))

The preparation of these notes was supported in part by N.S.F. Grant No. MPS 72-04591, and by an Alfred P. Sloan Foundation research fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. A. B. Bortz, M. H. Kalos, J. L. Lebowitz, and J. Marro (1975). Time evolution of a quenched binary alloy II. Computer simulation of a three dimensional model system, Physical Review B, 12, 2000–2011.

    Article  Google Scholar 

  2. A. B. Bortz, M. H. Kalos, J. L. Lebowitz, and M. A. Zendejas (1974). Time evolution of a quenched binary alloy. Computer simulation of a two dimensional model system, Physical Review B, 10, 535–541.

    Article  Google Scholar 

  3. J. Chover (1975). Convergence of a local lattice process, Stochastic Processes and their Applications, 3, 115–135.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Dawson (1974). Information flow in discrete Markov systems, Journal of Applied Probability, 11, 594–600.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Dawson (1975). Synchronous and asynchronous reversible Markov systems, Canadian Mathematical Bulletin, 17, 633–649.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. L. Dobrushin (1971). Markov processes with a large number of locally interacting components, Problems of Information Transmission, 7, 149–164, and 235–241.

    Google Scholar 

  7. R. Glauber (1963). The statistics of the stochastic Ising model, Journal of Mathematical Physics, 4, 294–307.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. O. Georgii (1975). Canonical Gibbs states, their relation to Gibbs states, and applications to two-valued Markov chains, Z. Wahrscheinlichkeitstheorie verw. Geb., 32, 277–300.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. O. Georgii (1976). On canonical Gibbs states and symmetric and tail events, Z. Wahrscheinlichkeitstheorie verw. Geb., 33, 331–341.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Gray and D. Griffeath (1976). On the uniqueness of certain interacting particle systems, Z. Wahrscheinlichkeitstheorie verw. Geb., 35, 75–86.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Griffeath (1975). Ergodic theorems for graph interactions, Advances in Applied Probability, 7, 179–194.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. E. Harris (1972). Nearest-neighbor Markov interaction processes on multidimensional lattices, Advances in Mathematics, 9, 66–89.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. E. Harris (1974). Contact interactions on a lattice, Annals of Probability, 2, 969–988.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. E. Harris (1976). On a class of set-valued Markov Processes, Annals of Probability, 4, 175–194.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. L. Helms (1974). Ergodic properties of several interacting Poisson particles, Advances in Mathematics, 12, 32–57.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Higuchi ( ). A study on the canonical Gibbs states.

    Google Scholar 

  17. Y. Higuchi and T. Shiga (1975). Some results on Markov processes of infinite lattice spin systems, Journal of Mathematics of Kyoto University, 15, 211–229.

    MathSciNet  MATH  Google Scholar 

  18. R. Holley (1970). A class of interactions in an infinite particle system, Advances in Mathematics, 5, 291–309.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Holley (1971). Free energy in a Markovian model of a lattice spin system, Communications in Mathematical Physics, 23, 87–99.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Holley (1971). Pressure and Helmholtz free energy in a dynamic model of a lattice gas, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, III, 565–578.

    Google Scholar 

  21. R. Holley (1972). An ergodic theorem for interacting systems with attractive interactions, Z. Wahrscheinlichkeitstheorie verw. Geb., 24, 325–334.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Holley (1972). Markovian interaction processes with finite range interactions, The Annals of Mathematical Statistics, 43, 1961–1967.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Holley (1974). Recent results on the stochastic Ising model, Rocky Mountain Journal of Mathematics, 4, 479–496.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Holley and T. M. Liggett (1975). Ergodic theorems for weakly interacting infinite systems and the voter model, The Annals of Probability, 3, 643–663.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Holley and D. Stroock (1976). A martingale approach to infinite systems of interacting processes, The Annals of Probability, 4, 195–228.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Holley and D. Stroock (1976). Applications of the stochastic Ising model to the Gibbs states, Communications in Mathematical Physics, 48, 249–265.

    Article  MathSciNet  Google Scholar 

  27. R. Holley and D. Stroock ( ). Dual processes and their application to infinite interacting systems, Advances in Mathematics.

    Google Scholar 

  28. R. Holley and D. Stroock (1976). L2 theory for the stochastic Ising model, Z. Wahrscheinlichkeitstheorie verw. Geb., 35, 87–101.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Kemeny, J. Snell, and A. Knapp (1966). Denumerable Markov Chains, Van Nostrand, Princeton, N. J.

    MATH  Google Scholar 

  30. R. Kinderman and J. Snell (1976). Markov random fields.

    Google Scholar 

  31. T. Kurtz (1969). Extensions of Trotter’s operator semigroup approximation theorems, Journal of Functional Analysis, 3, 354–375.

    Article  MathSciNet  MATH  Google Scholar 

  32. T. M. Liggett (1972). Existence theorems for infinite particle systems, Transactions of the A.M.S., 165,471–481.

    Article  MathSciNet  MATH  Google Scholar 

  33. T. M. Liggett (1973). An infinite particle system with zero range interactions, The Annals of Probability, 1, 240–253.

    Article  MathSciNet  MATH  Google Scholar 

  34. T. M. Liggett (1973). A characterization of the invariant measures for an infinite particle system with interactions, Transactions of the A.M.S., 179, 433–453.

    Article  MathSciNet  MATH  Google Scholar 

  35. T. M. Liggett (1974). A characterization of the invariant measures for an infinite particle system with interactions II, Transactions of the A.M.S., 198,201–213.

    Article  MathSciNet  MATH  Google Scholar 

  36. T. M. Liggett (1974). Convergence to total occupancy in an infinite particle system with interactions, The Annals of Probability, 2, 989–998.

    Article  MathSciNet  MATH  Google Scholar 

  37. T. M. Liggett (1975). Ergodic theorems for the asymmetric simple exclusion process, Transactions of the A.M.S., 213, 237–261.

    Article  MathSciNet  MATH  Google Scholar 

  38. T. M. Liggett (1976). Coupling the simple exclusion process, The Annals of Probability, 4, 339–356.

    Article  MathSciNet  MATH  Google Scholar 

  39. K. Logan (1974). Time reversible evolutions in statistical mechanics, Cornell University, Ph.D. dissertation.

    Google Scholar 

  40. N. Matloff ( ). Ergodicity conditions for a dissonant voting model, The Annals of Probability.

    Google Scholar 

  41. C. J. Preston (1974). Gibbs states on countable sets, Cambridge University Press.

    Google Scholar 

  42. D. Ruelle (1969). Statistical mechanics, W. A. Benjamin.

    Google Scholar 

  43. D. Ruelle (1968). Statistical mechanics of a one-dimensional lattice gas, Communications in Mathematical Physic, 9, 267–278.

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Schwartz (1976). Ergodic theorems for an infinite particle system with births and deaths, Annals of Probability, 4

    Google Scholar 

  45. F. Spitzer (1970). Interaction of Markov processes, Advances in Mathematics, 5, 246–290.

    Article  MathSciNet  MATH  Google Scholar 

  46. F. Spitzer (1971). Random fields and interacting particle systems, M. A. A. Summer Seminar Notes, Williamstown, Mass.

    MATH  Google Scholar 

  47. F. Spitzer (1974). Introduction aux processus de Markov a parametres dans Zv, Lecture Notes in Mathematics 390, Springer-Verlag.

    Google Scholar 

  48. F. Spitzer (1974). Recurrent random walk of an infinite particle system, Transactions of the A.M.S., 198, 191–199.

    Article  MathSciNet  MATH  Google Scholar 

  49. F. Spitzer (1975). Random time evolution of infinite particle systems, Advances in Mathematics, 16, 139–143.

    Article  MathSciNet  MATH  Google Scholar 

  50. O. N. Stavskaya and I. I. Pyatetskii-Shapiro (1971). On homogeneous nets of spontaneously active elements, Systems Theory Res., 20, 75–88.

    Google Scholar 

  51. W. G. Sullivan (1973). Potentials for almost Markovian random fields, Communications in Mathematical Physics, 33, 61–74.

    Article  MathSciNet  MATH  Google Scholar 

  52. W. G. Sullivan (1974). A unified existence and ergodic theorem for Markov evolution of random fields, Z. Wahrscheinlichkeitstheorie verw. Geb., 31,47–56.

    Article  MathSciNet  MATH  Google Scholar 

  53. W. G. Sullivan (1976). Processes with infinitely may jumping particles, Proceedings of the A.M.S., 54, 326–330.

    Article  MATH  Google Scholar 

  54. W. G. Sullivan (1975). Mean square relaxation times for evolution of random fields, Communications in Mathematical Physics, 40, 249–258.

    Article  MathSciNet  MATH  Google Scholar 

  55. W. G. Sullivan (1975). Markov processes for random fields, Communications of the Dublin Institute for Advanced Studies, series A, number 23.

    Google Scholar 

  56. W. G. Sullivan ( ). Specific information gain for interacting Markov processes.

    Google Scholar 

  57. L. N. Vasershtein (1969). Processes over denumerable products of spaces, describing large systems, Problems of Information Transmission, 3, 47–52.

    MathSciNet  Google Scholar 

  58. D. Schwartz ( ). Applications of duality to a class of Markov processes

    Google Scholar 

  59. D. Griffeath ( ). An ergodic theorem for a class of spin systems.

    Google Scholar 

  60. R. Lang ( ). Unendlich-dimensionale Wienerprozesse mit wechselwirkung I: Existenz.

    Google Scholar 

  61. L. N. Vasershtein and A. M. Leontovich (1970). Invariant measures of certain Markov operators describing a homogeneous random medium, Problems of Information Transmission, 6, 61–69.

    Google Scholar 

  62. C. Cocozza and C. Kipnis ( ). Existence de processus Markoviens pour des systems infinis de particules.

    Google Scholar 

  63. L. Gray and D. Griffeath ( ). On the nonuniqueness of proximity processes.

    Google Scholar 

  64. R. Holley and D. Stroock ( ). Nearest neighbor birth and death processes on the real line.

    Google Scholar 

Download references

Authors

Editor information

P. -L. Hennequin

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag

About this paper

Cite this paper

Liggett, T.M. (1977). The stochastic evolution of infinite systems of interacting particles. In: Hennequin, P.L. (eds) Ecole d’Eté de Probabilités de Saint-Flour VI-1976. Lecture Notes in Mathematics, vol 598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0097493

Download citation

  • DOI: https://doi.org/10.1007/BFb0097493

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08340-5

  • Online ISBN: 978-3-540-37307-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics