Advertisement

A unified approach to the asymptotic distribution theory of certain midrank statistics

  • F. H. Ruymgaart
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 821)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BEHNEN, K. (1973). Asymptotic properties of averaged scores rank tests of independence. Proc. of the Prague Symp. on Asymptotic Statist. (Hájek ed.), Vol.II, 5–30.MathSciNetGoogle Scholar
  2. [2]
    BEHNEN, K. (1976). Asymptotic comparison of rank tests for the regression problem when ties are present. Ann. Statist. 4, 157–174.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    BEHNEN, K. (1978). Vorzeichen-Rangtests mit Nullen und Bindungen. Tech. Report 13, Dept. Mathematics Un. Bremen.Google Scholar
  4. [4]
    CHERNOFF, H. and SAVAGE, I.R. (1958). Asymptotic normality and efficiency of certain nonparametric test statistics. Ann. Math. Statist. 29, 972–994.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    CONOVER, W.J. (1973). Rank tests for one sample, two samples and k samples without the assumption of a continuous distribution function. Ann. Statist. 1, 1105–1125.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    HÁJEK, J. (1969). A Course in Nonparametric Statistics. Holden-Day, San Francisco.zbMATHGoogle Scholar
  7. [7]
    MOORE, D.S. (1968). An elementary proof of asymptotic normality of linear functions of order statistics. Ann. Math. Statist. 39, 263–265.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    RUYMGAART, F.H. (1979). Asymptotic theory of a class of midrank statistics in the non-i.i.d. case. Tech. Report 7909, Dept. of Mathematics Cath.Un. Nijmegen.Google Scholar
  9. [9]
    RUYMGAART, F.H. and ZUIJLEN, M.C.A. van (1977). Asymptotic normality of linear combinations of functions of order statistics in the non-i.i.d.-case. Indag.Math. 80, 432–447.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    RUYMGAART, F.H. and ZUIJLEN, M.C.A. van (1978). Asymptotic normality of multivariate linear rank statistics in the non-i.i.d. case. Ann. Statist. 6, 588–602.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    VORLICKOVÁ, D. (1970). Asymptotic properties of rank tests under discrete distributions. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 14, 275–289.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    VORLICKOVÁ, D. (1972). Asymptotic properties of rank tests of symmetry under discrete distributions. Ann. Math. Statist. 43, 2013–2018.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    ZUIJLEN, M.C.A. van (1978). Properties of the empirical distribution function for independent non-identically distributed random variables. Ann. Probability 6, 250–266.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • F. H. Ruymgaart
    • 1
  1. 1.Department of MathematicsKatholieke Un. Nijmegen ToernooiveldNijmegenThe Netherlands

Personalised recommendations