Dilations of reproducing kernels

  • R. Shonkwiler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 828)


Hilbert Space Reproduce Kernel Hilbert Space Fixed Element Kernel Theory Positive Definite Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Aronszajn, La Théorie générale des royaux reproduisants et ses applications, Première Partie, Proc. Cambridge Philos. Soc. Vol. 39, (1944), 133–153.MathSciNetCrossRefGoogle Scholar
  2. [2]
    _____, Theory of Reproducing kernels, Trans. Amer. Math. Soc., 68(1950), 337–404.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. Masani, Dilations as Propagators of Hilbertian Varieties, S.I.A.M. Math. Anal., 9, No. 3(1978), 414–456.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    _____, Propagators and dilations, Probability theory on vector spaces (Proc. Conf. Trzebieszowice, 1977), p. 95–117, Lecture Notes in Math., 656, Springer, Berlin, 1978.CrossRefGoogle Scholar
  5. [5]
    R. Shonkwiler and G. Faulkner, Kernel Dilation in Reproducing Kernel Hilbert Space and its Application to Moment Problems, Pac. J. Math., Vol. 77(1978), No. 1, 103–115.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Weron and J. Gorniak, An analogue of Sz.-Nagy’s dilation theorem, Bull. Acad. Polonaise Sci. 24(1976), 867–872.MathSciNetzbMATHGoogle Scholar
  7. [7]
    A. Weron, Remarks on positive definite operator valued functions in Banach spaces, Bull. Acad. Polonaise Sci. 24(1976), 873–876.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. Shonkwiler

There are no affiliations available

Personalised recommendations