On moving average representations of Banach-space valued stationary processes over LCA-groups

  • F. Schmidt
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 828)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.Hewitt, K.A. Ross, Abstract harmonic analysis I/II, Berlin-Göttingen-Heidelberg 1963/ Berlin-Heidelberg-New York 1970.Google Scholar
  2. [2]
    A.Makagon, F. Schmidt, A decomposition theorem for densities of positive operator-valued measures. Bull.Acad.Polon.Sci., Ser.Sci.Math. Astronom.Phys (to appear).Google Scholar
  3. [3]
    P. Masani, Quasi-isometric measures and their applications, Bull.Amer.Math.Soc. 76, 3 (1970) 427–528.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    F. Schmidt, Über die Darstellung einer Klasse von stationaren stochastischen Prozessen mit Hilfe von verallgemeinerten zufälligen Masen, Math. Nachr. 56 (1973) 21–41.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    — Verallgemeinerte stationäre stochastische Prozesse auf Gruppen der Form Z × G, Math. Nachr. 57 (1973) 337–357.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    — Verallgemeinerte stationare stochastische Prozesse auf Gruppen der Form R × G, Math.Nachr. 68 (1975) 29–48.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    — Banach-space valued stationary processes with absolutely continuous spectral function, Probability Theory on Vector Spaces, Lecture Notes in Math. 656 (1978) 237–244.CrossRefGoogle Scholar
  8. [8]
    — Positive operatorwertige Mase und banachraumwertige stationare Prozesse auf LCA-Gruppen, Studia Mathematica (to appear).Google Scholar
  9. [9]
    A. Weron, Prediction Theory in Banach Spaces, Probability — Winter School, Lecture Notes in Math. 472 (1975) 207–228.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • F. Schmidt
    • 1
  1. 1.Sektion MathematikTechnische UniversitätDresden

Personalised recommendations