Fourier-wiener transform on brownian functionals

  • Hui-Hsiung Kuo
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 828)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Gel’fand and N. Ya. Vilenkin, Generalized functions, vol. 4, Applications of harmonic analysis, Academic Press (1964).Google Scholar
  2. 2.
    L. Gross, Abstract Wiener spaces, Proc. 5th Berkeley Sym. Math. Stat. Prob. 2 (1965), 31–42.Google Scholar
  3. 3.
    T. Hida, Quadratic functionals of Brownian motion, J. Multivariate Analysis 1 (1971), 58–69.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    T. Hida, Analysis of Brownian functionals, Carleton Math. Lecture Notes, no. 13, Carleton Univ. Ottawa (1975).Google Scholar
  5. 5.
    T. Hida, Analysis of Brownian functionals, Mathematical Programming Study 5 (1976), 53–59.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    T. Hida, White noise and Lévy’s functional analysis, Proc. Measure Theory, Oberwolfach (1977), Lecture Notes in Math. vol. 695 (1978), 155–163, Springer-Verlag.Google Scholar
  7. 7.
    T. Hida, Generalized multiple Wiener integrals, Proc. Japan Academy 54 (1978), 55–58.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    T. Hida, Causal analysis in terms of white noise, (preprint 1979).Google Scholar
  9. 9.
    T. Hida and L. Streit, On quantum theory in terms of white noise, Nagoya Math. J. 68 (1977), 21–34.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    K. Ito, Stochastic analysis in infinite dimensions, Proc. International Conference on Stochastic Analysis, Evanston, Academic Press (1978), 187–197.Google Scholar
  11. 11.
    H.-H. Kuo, Integration by parts for abstract Wiener measures, Duke Math. J. 41 (1974), 373–379.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    H.-H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math. vol. 463 (1975), Springer-Verlag.Google Scholar
  13. 13.
    H.-H. Kuo, Differential calculus for measures on Banach spaces, Proc. Vector Space Measures and Appl, I, Lecture Notes in Math. vol. 644 (1978), 270–285, Springer-Verlag.Google Scholar
  14. 14.
    Y. J. Lee, Applications of the Fourier-Wiener transform to differential equations on infinite dimensional spaces I, Trans. Amer. Math. Soc. (to appear).Google Scholar
  15. 15.
    M. Ann Piech, The Ornstein-Uhlenbeck semigroup in an infinite dimensional L2 setting, J. Functional Analysis 18 (1975), 271–285.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Ann Piech, Support properties of Gaussian Processes over Schwartz space, Proc. Amer. Math. Soc. 53 (1975), 460–462.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Hui-Hsiung Kuo
    • 1
  1. 1.Department of MathematicsLouisiana State UniversityBaton RougeU.S.A.

Personalised recommendations