Advertisement

A class of convolution semi-groups of measures on a Lie group

  • A. Hulanicki
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 828)

Keywords

Infinitesimal Generator Polynomial Weight Continuous Semi Trotter Product Formula Dissipative Dist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Duflo, Representations de semi-groupes de measures sur un groupe localement compact, Ann.Inst.Fourier, Grenoble 28 (1978), 225–249.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Paweł Głowacki, A calculus of symbols and convolution semi-groups on the Heisenberg group, Studia Math.(to appear).Google Scholar
  3. [3]
    A. Hulanicki, Commutative subalgebra of L1(G) associated with a subelliptic operator on a Lie group G, Bull.Amer.Math.Soc. 81 (1975), 121–124.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipłicity of certain subelliptic operators on the Heisenberg group, Studia Math.56 (1976), 165–173.MathSciNetzbMATHGoogle Scholar
  5. [5]
    A. Hulanicki, A tauberian property of the convolution semi-group generated by X2−|Y| on the Heinsenberg group, Proceedings of Symposia in Pure Math.35, Part 2 (1979), 403–405.MathSciNetCrossRefGoogle Scholar
  6. [6]
    G.A. Hunt, Semi-groups of Measures on Lie Groups, Trans.Amer.Math.Soc.81 (1956), 264–293.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Jan Kisynski, Holomorphicity or semigroups of operators generated by sublaplacians on Lie groups, Lecture Notes in Math. Springer-Verlag.Google Scholar
  8. [8]
    Thomas G. Kurtz, A random Trotter product formula, Proc.Amer.Math.Soc. 35 (1972), 147–154.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    T.Tytlik, Functional calculus on Beurling algebras, (to appear)Google Scholar
  10. [10]
    D. Wehn, Some remarks on Gaussian distributions on a Lie group, Z.Wahrscheinlichkeitstheorie verw.Geb.30 (1974), 255–263.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Yoshida, Functional Analysis, Berlin-Göttingen-Heidelberg: Springer (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • A. Hulanicki
    • 1
  1. 1.Institute of MathematicsPolish Academy of SciencesWrocławPoland

Personalised recommendations