The generalized domain of attraction of spherically symmetric stable laws on ℝd

  • Marjorie G. Hahn
  • Michael J. Klass
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 828)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Billingsley, P. (1968). Convergence of Probability Measures. Wiley.Google Scholar
  2. Feller, W. (1971). An Introduction to Probability Theory and its Applications, v. II, second edition. Wiley.Google Scholar
  3. Gnedenko, B. V. and Kolmogorov, A. N. (1968). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley.Google Scholar
  4. Hahn, M. (1979). The generalized domain of attraction of a Gaussian law on Hilbert space. Lecture Notes in Math., 709, 125–144.Google Scholar
  5. Hahn, M. and Klass, M. (1980). Matrix normalization of sums of i.i.d. random vectors in the domain of attraction of the multivariate normal. Annals of Probability, April, 1980.Google Scholar
  6. Hahn, M. and Klass, M. (1979). The multi-dimensional central limit theorem for arrays normed by affine transformations. (Preprint).Google Scholar
  7. Halmos, P. R. (1958). Finite-dimensional Vector Spaces, second edition. Van Nostrand Co.Google Scholar
  8. Sharpe, M. (1969). Operator-stable probability distributions on vector groups. Trans. of Amer. Math. Soc. 136, 51–65.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Wolfe, S. J. (1975). On the unimodality of spherically symmetric stable functions. J. of Multivariate Analysis 5, 236–242.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Marjorie G. Hahn
    • 1
  • Michael J. Klass
    • 2
  1. 1.Department of MathematicsTufts UniversityMedfordUSA
  2. 2.Department of StatisticsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations