Advertisement

Infinite dimensional newtonian potentials

  • René Carmona
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 828)

Abstract

We give a survey of various curiosities and problems concerning potential theory of infinite dimensional Brownian motion processes.

Keywords

Invariant Function Gaussian Measure Transition Kernel Complete Orthonormal System Finite Dimensional Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. BORELL: Random linear functionals and subspaces of probability one. Ark. Mat. 14 (1976) 79–92.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. CARMONA: Potentials on Abstract Wiener Space. J. Functional Anal. 26 (1977) 215–231.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. CARMONA: Tensor product of Gaussian measures. in "Vector Space Measures and Applications I" Proc. Dublin 1977 ed. R.M.Aron and S.Dineen Lect. Notes in Math. #644 p.96–124.Google Scholar
  4. [4]
    J. DENY: Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale. Ann. Inst. Fourier 12 (1962) 643–667.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    X. FERNIQUE: Intégrabilité des vecteurs gaussiens. C.R.Acad.Sci. Paris, ser.A 270 (1970) 1698–1699.MathSciNetzbMATHGoogle Scholar
  6. [6]
    V. GOODMAN: A Liouville theorem for abstract Wiener spaces. Amer. J. Math. 95 (1973) 215–220.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    L. GROSS: Abstract Wiener Spaces. Proc. Fifth Berkeley Symp. on Math. Stat. and Prob. vol.II Univ. California Press (1967) p.31–42.Google Scholar
  8. [8]
    L. GROSS: Potential Theory on Hilbert Space. J. Functional Anal. 1 (1967) 123–181.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G.A. HUNT: Markoff Processes and Potentials I. Ill. J. Math. 1 (1957) 44–93.MathSciNetzbMATHGoogle Scholar
  10. [10]
    H.H.KUO: Gaussian Measures in Banach Spaces. Lect. Notes in Math. #463 (1975).Google Scholar
  11. [11]
    P.A.MEYER: Processus de Markov. Lect. Notes in Math. #26 (1967).Google Scholar
  12. [12]
    M.A. PIECH: Regularity of the Green operator on abstract Wiener space. J. Differential Equat. 12 (1972) 353–360.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S.C.PORT and C.J.STONE: Brownian Motion and Classical Potential Theory. Academic Press (1978).Google Scholar
  14. [14]
    H. ROST: Die Stoppverteilungen eines Markoff-Prozesses mit lokalendlichem Poten tial. Manuscripta Math. 3 (1970) 321–330.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • René Carmona
    • 1
  1. 1.Département de MathématiquesUniversité de Saint EtienneSaint Etienne CédexFrance

Personalised recommendations