On the integrability of Gaussian random vectors

  • T. Byczkowski
  • T. Zak
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 828)


Sample Path Random Element Orlicz Space Invariance Principle Gaussian Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    de Acosta, A. (1975) Stable measures and seminorms, Ann. Probability 3, 865–875.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    de Acosta, A. (1977) Asymptotic behavior of stable measures, Ann. Probability 5, 494–499.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Byczkowski, T. (1976) The invariance principle for group-valued random variables, Studia Math. 56, 187–198.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Byczkowski, T. (1979) Norm convergent expansion for LΦ-valued Gaussian random elements, Studia Math. 64, 87–95.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Byczkowski, T. and Zak, T. Asymptotic properties of semigroups of measures on vector spaces, (to appear in Ann. Probability).Google Scholar
  6. [6]
    Byczkowski, T. and Inglot, T. The invariance principle for vector-valued random variables with application to functional random limit theorems, (to appear).Google Scholar
  7. [7]
    Fernique, X. (1970) Intégrabilité des vecteurs Gaussiens, C.R. Acad. Sci. Paris Ser. A 270, 1698–1699.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Gorgadze, Z.G. (1976) On measures in Banach spaces of measurable functions, (Russian) Trudy Tbliss. Univ. 166, 43–50.Google Scholar
  9. [9]
    Helm, W. (1978) On Gaussian measures and the central limit theorem in certain F-spaces, Springer Lecture Notes in Math. 656. 59–65.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Inglot, T and Weron, A. (1974) On Gaussian random elements in some non-Banach spaces, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 22, 1039–1043.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Inglot, T. (1976) Ph. D. Thesis, Technical University, Wrocław.Google Scholar
  12. [12]
    Litwin, T. (1980) M. Sc. Thesis, Technical University, Wrocław.Google Scholar
  13. [13]
    Marcus, M.B. and Shepp, L.A. (1971) Sample behavior of Gaussian processes, Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2, 423–442.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • T. Byczkowski
    • 1
  • T. Zak
    • 1
  1. 1.Technical UniversityWrocław

Personalised recommendations