Advertisement

Hilbert spaces of Hilbert space valued functions

  • J. Burbea
  • P. Masani
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 828)

Keywords

Hilbert Space Number Field Positive Definite Linear Manifold Fundamental Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68(1950), 337–404.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Halmos, A Hilbert space problem book, van Norstrand, New York, 1967.zbMATHGoogle Scholar
  3. 3.
    E. Hille, Introduction to the general theory of reproducing kernels, Rocky Mountain J. of Math. 2(1971), 321–368.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    E. Hille and R.S. Phillips, Functional analysis and semi-groups, Coll. Pub. Vol. 31, Amer. Math. Soc. Providence R.I, 1957.Google Scholar
  5. 5.
    P. Masani, Dilations as propagators of Hilbertian varieties, SIAM J of Math. Anal. 9(1978), 414–456.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B. Sz.-Nagy, Positive definite kernels generated by operator-valued analytic functions, Acta Sci. Math. 26(1965), 191–192.MathSciNetzbMATHGoogle Scholar
  7. 7.
    B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North Holland, New York, 1970.zbMATHGoogle Scholar
  8. 8.
    G. B. Pedrick, Theory of reproducing kernels in Hilbert spaces of vector-valued functions, Univ. of Kansas Tech. Rep. 19, Lawrence, 1957.Google Scholar
  9. 9.
    J. Rovnyak, Some Hilbert spaces of analytic functions, Dissertation Yale Univ., 1963.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. Burbea
    • 1
  • P. Masani
    • 1
  1. 1.University of PittsburghPittsburgh

Personalised recommendations