Skip to main content

Some computational results on the spectra of graphs

  • Conference paper
  • First Online:
Combinatorial Mathematics IV

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 560))

Abstract

The polynomial of a graph is the characteristic polynomial of its 0–1 adjacency matrix. Two graphs are cospectral if their polynomials are the same.

In this paper some of the results from a numerical study of the polynomials of graphs are presented. The study has encompassed 9 point graphs, 9 point bipartite graphs, 14 point trees and 13 point forests. Also given are several theoretical results which were prompted by the numerical data. These include two characterizations of those cospectral graphs which have cospectral complements, and a proof that, in the sense of Schwenk [20] "almost no" trees are characterized by their polynomials together with the polynomials of their complements. In addition, mention is made of those cospectral graphs which have cospectral linegraphs, and those which are cospectral to their own complements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Baker, A. Dewdney and A. Szilard, Generating the nine-point graphs, Math. Comp. 28, 127 (1974), 833–838.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Behzad and G. Chartrand, Introduction to the Theory of Graphs. (Allyn and Bacon, 1971.)

    Google Scholar 

  3. I. Berezin and N. Zhidkov, Computing Methods, Vol. 2. (Pergamon 1965.)

    Google Scholar 

  4. L. Collatz and U. Singowitz, Spektren endlicher Grafen. Abh. Math. Sem. Univ. Hamburg 21 (1957), 63–77.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Cvetković, Graphs and their spectra, Publ. Elek. Fak. Univ. Beograd: Ser. Mat. Fiz. 354 (1971), 1–50.

    MathSciNet  MATH  Google Scholar 

  6. H. Finck and G. Grohman, Vollständiges Produkt, chromatische Zahl und charakteristisches Polynom regularer Graphen (I), Wiss. Z. Techn. Hochsch. Ilmenau 11 (1965), 1–3.

    MathSciNet  MATH  Google Scholar 

  7. F. Gantmacher, Applications of the Theory of Matrices, Vol. 2. (Chelsea, 1959.)

    Google Scholar 

  8. C. Godsil and B. McKay, Products of graphs and their spectra, this volume.

    Google Scholar 

  9. F. Harary, Graph Theory. (Addison-Wesley, 1969.)

    Google Scholar 

  10. F. Harary and E. Palmer, Graphical enumeration. (Academic Press, 1973).

    Google Scholar 

  11. F. Harary, C. King, A. Mowshowitz and R. Read, Cospectral graphs and digraphs, Bull. London Math. Soc. 3 (1971), 321–328.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Harary and G. Prins, Enumeration of bicolourable graphs, Canad. J. Math. 15 (1963), 237–248.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. King, Characteristic polynomials of 7-node graphs, Scientific Rept., Univ. of the West Indies/CC 6 (AFOSR project 1026-66).

    Google Scholar 

  14. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities. (Allyn and Bacon, 1964.)

    Google Scholar 

  15. K. McAvaney, Annote on limbless trees, Bull. Austral. Math. Soc. 11 (1974), 381–384.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Mowshowitz, The characteristic polynomial of a graph, J. Comb. Th. 12(B), (1972), 177–193.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Read, Teaching graph theory to a computer, Recent progress in Combinatorics Proc. Third Waterloo Conf. Combinatorics. (Academic Press, 1968) 161–174.

    Google Scholar 

  18. R. Read, The coding of various kinds of unlabelled trees, Graph Theory and Computing (ed. R. Read) (Academic Press, 1972) 153–183.

    Google Scholar 

  19. H. Sachs, Beziehungen zwischen den in einem Graphen enthaltenen Kreisen und seinem charakteristischen Polynom., Publ. Math. Debrecen 9 (1962), 270–288.

    MathSciNet  Google Scholar 

  20. A. Schwenk, Almost all trees are cospectral. New Directions in the Theory of Graphs. (Proc. Third Ann Arbor Conf., Michigan) (Academic Press, 1973), 275–307.

    Google Scholar 

  21. R. Wilson, On the adjacency matrix of a graph, Combinatorics. (Proc. Conf. Comb. Maths., Oxford) (Inst. Math. Appl., 1972), 295–321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Louis R. A. Casse Walter D. Wallis

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this paper

Cite this paper

Godsil, C., Mckay, B. (1976). Some computational results on the spectra of graphs. In: Casse, L.R.A., Wallis, W.D. (eds) Combinatorial Mathematics IV. Lecture Notes in Mathematics, vol 560. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0097370

Download citation

  • DOI: https://doi.org/10.1007/BFb0097370

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08053-4

  • Online ISBN: 978-3-540-37537-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics