Advertisement

Classes of compact sequential spaces

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1401)

Keywords

Compact Space Winning Strategy Compact Hausdorff Space Discrete Subspace Countable Tightness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    A. V. Arkhangel’skii, The frequency spectrum of a topological space and the classification of spaces, Doklady Akad. Nauk SSSR 206 (1972) 265–268 = Soviet Math. Dokl. 13 (1972).MathSciNetGoogle Scholar
  2. [A2]
    _____, On invariants of character and weight type, Trudy Moskov. Mat. Obs. 38 (1979) = Trans. Moscow Math. Soc. 1980, Issue 2, 1–23.Google Scholar
  3. [A3]
    _____, The star method, new classes of spaces, and countable compactness, Soviet Math. Dokl. 21 (1980) 550–554.MathSciNetGoogle Scholar
  4. [A4]
    _____, The frequency spectrum of a topological space and the product operation, Trudy Moskov. Mat. Obs. 40 (1979) = Trans. Moscow Math. Soc. 1981, Issue 2, 163–200.Google Scholar
  5. [AF]
    _____ and S. P. Franklin, Ordinal Invariants for Topological Spaces Michigan Math. J. 15 (1968) 313–323.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [AL]
    D. Amir and J. Lindenstrauss, The structure of weakly compact subsets in Banach spaces, Ann. Math. 88 (1968) 35–46.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Ba1]
    J. W. Baker, Ordinal subspaces of topological spaces, Gen. Top. Appl. 3 (1973) 85–91.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Ba2]
    Z. Balogh, Paracompactness in locally nice spaces, preprint.Google Scholar
  9. [BDFN]
    Z. Balogh, A. Dow, D. H. Fremlin, and P. J. Nyikos, Countable tightness and proper forcing, AMS Bulletin, to appear.Google Scholar
  10. [Be]
    A. Berner, βX can be Fréchet, AMS Proceedings. 80 (1980) 367–373.MathSciNetzbMATHGoogle Scholar
  11. [BL]
    H. R. Bennett and D. J. Lutzer, A note on weak ϑ-refinability Gen. Top. Appl. 2 (1972) 49–54.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Bu]
    D. Burke, Covering properties, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan ed., North-Holland, 1984, pp. 347–422.Google Scholar
  13. [vD]
    E. K. van Douwen, The integers and topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan ed., North-Holland, 1984, pp. 111–167.Google Scholar
  14. [Do]
    A. Dow, Two classes of Fréchet-Urysohn spaces, preprint.Google Scholar
  15. [Dy]
    N. Dykes, Generalizations of realcompact spaces, Pac. J. Math. 33 (1970) 571–581.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [E]
    R. Engelking, General Topology, Polish Scientific Publishers, Warsaw, 1977.zbMATHGoogle Scholar
  17. [F]
    S. P. Franklin, Spaces in which sequences suffice I and II, Fund. Math. 57 (1965) 107–115 and 61 (1967) 51–56.MathSciNetzbMATHGoogle Scholar
  18. [Ga1]
    R. J. Gardner, The regularity of Borel measures and Borel measure-compactness, Proc. London Math. Soc. 30 (1975) 95–113.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Ga2]
    _____, Corson compact and Radon spaces, Houston J. Math 13 (1987) 37–46.MathSciNetzbMATHGoogle Scholar
  20. [Gi]
    R. F. Gittings, Some results on weak covering conditions, Canad. J. Math. 26 (1974) 1152–1156.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [GJ]
    L. Gillman and M. Jerison, Rings of Continuous Functions, D. van Nostrand Co., 1960.Google Scholar
  22. [GN]
    G. Gruenhage and P. Nyikos, Hereditary normality in squares of compact spaces, preprint.Google Scholar
  23. [GP]
    R. J. Gardner and W. Pfeffer, Borel measures, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan ed., North-Holland, 1984, pp. 961–1043.Google Scholar
  24. [Gr1]
    G. Gruenhage, Infinite games and generalizations of first-countable spaces, Gen. Top. Appl. 6 (1976) 339–352.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Gr2]
    _____, Generalized metric spaces, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan ed., North-Holland, 1984, pp. 423–501.Google Scholar
  26. [Gr3]
    _____, Covering properties in X2-Δ, W-sets, and compact subsets of Σ-products, Top. Appl. 17 (1984) 287–304.MathSciNetCrossRefGoogle Scholar
  27. [Gr4]
    _____, Games, covering properties, and Eberlein compacts, Top. Appl. 23 (1986) 207–316.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [Gr5]
    _____, A Corson compact space of Todorcevic, Fund. Math.Google Scholar
  29. [Gr6]
    _____, A note on Gul’ko compact spaces, AMS Proceedings.Google Scholar
  30. [H]
    R. Hodel, Cardinal functions I, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan ed., North-Holland, 1984, pp. 1–61.Google Scholar
  31. [IN]
    M. Ismail and P. Nyikos, On spaces in which countably compact subsets are closed, and hereditary properties, Top. Appl. 11 (1980) 281–292.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [JKR]
    I. Juhász, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canad. J. Math. 28 (1976) 998–1005.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [K]
  34. [L]
    R. Laver, On the consistency of Borel’s conjecture, Acta. Math. 137 (1976) 151–169.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [Ma]
    V. I. Malyhin, On countable spaces having no bicompactification of countable tightness, Dokl. Akad. Nauk. SSSR 203 (1972) 1001–1003 = Soviet Math. Sokl. 13 (1972) 1407–1411.MathSciNetzbMATHGoogle Scholar
  36. [Mi1]
    E. Michael, A quintuple quotient quest, Gen. Top. Appl. 2 (1972) 91–138.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [Mi2]
    A. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan ed., North-Holland, 1984, 201–233.Google Scholar
  38. [No1]
    T. Nogura, Fréchetness of inverse limits and products, Top. Appl. 20 (1985) 59–66.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [No2]
    _____, The product of <αi>-spaces, Top. Appl. 21 (1985) 251–259.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [Ny1]
    P. Nyikos, Covering properties on σ-scattered spaces, Top. Proceedings 2 (1977) 509–542.MathSciNetGoogle Scholar
  41. [Ny2]
    _____, Metrizability and the Fréchet-Urysohn property in topological groups, AMS Proceedings 83 (1981) 793–801.MathSciNetzbMATHGoogle Scholar
  42. [Ny3]
    _____, Axioms, theorems, and problems related to the Jones Lemma, in: General Topology and Modern Analysis, L. F. McAuley and M. M. Rao ed., 441–449.Google Scholar
  43. [Ny4]
    _____, Various smoothings of the long line and their tangent bundles I: Basic ZFC results, Advances in Math., to appear.Google Scholar
  44. [Ny5]
    _____, Various smoothings of the long line and their tangent bundles II: Countable metacompactness and sections, Advances in Math., to appear.Google Scholar
  45. [Ny6]
    _____, Various smoothings of the long line and their tangent bundles III: Consistency and independence results, Advances in Math., to appear.Google Scholar
  46. [Ny7]
    _____, The Cantor tree and the Fréchet-Urysohn property, to appear in the proceedings of the Third New York Conference on Limits.Google Scholar
  47. [Ny8]
    ___, ωω and the Fréchet-Urysohn and αi-properties, preprint.Google Scholar
  48. [O1]
    R. C. Olson, Bi-quotient maps and countably bisequential spaces, Ge. Top. Appl. 4 (1974) 1–28.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [Os1]
    A. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976) 505–516.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [Os2]
    _____, On spaces having a Gδ-diagonal, Coll. Math. Soc. János Bolyai (1978).Google Scholar
  51. [PY]
    E. G. Pytkeev and N. N. Yakovlev, On bicompacta which are unions of spaces defined by means of coverings, Comment. Math. Univ. Carolinae 21 (1980) 247–261.MathSciNetzbMATHGoogle Scholar
  52. [Ro]
    H. P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces, Compositio Math. 28, Fasc. 1 (1974) 83–111.MathSciNetzbMATHGoogle Scholar
  53. [Ru1]
    M. E. Rudin, Dowker spaces, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan ed., North-Holland, 1984, pp. 761–780.Google Scholar
  54. [Ru2]
    _____, A perfectly normal manifold from *, Top. Appl., to appear.Google Scholar
  55. [Sh]
    P. L. Sharma, Some characterizations of W-spaces and w-spaces, Gen. Top. Appl. 9 (1978) 289–293.MathSciNetCrossRefzbMATHGoogle Scholar
  56. [Si1]
    F. Siwiec, On defining a space by a weak base, Pac. J. Math. 52 (1974) 233–245.MathSciNetCrossRefzbMATHGoogle Scholar
  57. [Si2]
    P. Simon, A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolinae 21 (1980) 749–753.zbMATHGoogle Scholar
  58. [So]
    G. A. Sokoloff, On some classes of compact spaces lying in Σ-products, Comment. Math. Univ. Carolinae 25 (1984).Google Scholar
  59. [SS]
    L. A. Steen and J. A. Seebach, Counterexamples in Topology, Springer-Verlag, 1978.Google Scholar
  60. [T]
    M. G. Tkachenko, On compactness of countably compact spaces having additional structure, Trudy Moskov. Mathem. Obs. 46 (1983) = Trans. Moscow Math. Soc. 1984, Issue 2, 149–167.MathSciNetzbMATHGoogle Scholar
  61. [U]
    V. V. Uspensky, Pseudocompact spaces with a σ-point-finite base are metrizable, Comment. Math. Univ. Carolinae 25, 2 (1984) 261–264.MathSciNetGoogle Scholar
  62. [V1]
    J. E. Vaughan, Discrete sequences of points, Top. Proceedings 3 (1978) 237–265.MathSciNetzbMATHGoogle Scholar
  63. [V2]
    _____, Countably compact and sequentially compact spaces, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan ed., North-Holland, 1984, pp. 569–602.Google Scholar
  64. [Y]
    N. N. Yakovlev, On the theory of σ-metrizable spaces, Dokl. Akad. Nauk SSSR 229 (1976) 1330–1331 = Soviet Math. Dokl. 17 (1976) 1217–1219.MathSciNetGoogle Scholar
  65. [Z]
    P. L. Zenor, P. L. Zenor, Certain subsets of products of Θ-refinable spaces are realcompact, AMS Proceedings 40 (1973) 612–614.MathSciNetzbMATHGoogle Scholar
  66. [Zh]
    H.-X. Zhou, A conjecture on compact Fréchet space, AMS Proceedings 89 (1983) 326–328.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of South CarolinaColumbia

Personalised recommendations