Advertisement

Towards a structure theory for ideals on Pκλ

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1401)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BTW]
    Baumgartner, J.E., Taylor, A.D., and Wagon, S., Structural properties of ideals, Dissertationes Mathematicae CXCVII, 1982.Google Scholar
  2. [B]
    Blass, A.R., Orderings of Ultrafilters, Doctoral Dissertation, Harvard University, 1970.Google Scholar
  3. [C1]
    Carr, Donna M., The minimal normal filter on P κ λ Proc. Amer. Math. Soc., 86 (1982), 316–320.MathSciNetzbMATHGoogle Scholar
  4. [C2]
    Carr, Donna M., P κ λ partition relations, Fund. Math., 128 (1987), 181–195.MathSciNetzbMATHGoogle Scholar
  5. [C3]
    Carr, Donna M., A note on the λ-Shelah property, Fund. Math., 128 (1987) 197–198.MathSciNetzbMATHGoogle Scholar
  6. [CP]
    Carr, Donna M., and Pelletier, Donald H., Towards a structure theory for ideals on P κ λ II, in preparation.Google Scholar
  7. [D]
    DiPrisco, C.A., Combinatorial properties and supercompact cardinals, Ph.D Thesis, M.I.T., 1976.Google Scholar
  8. [DM]
    DiPrisco, C.A., and Marek, W., Some aspects of the theory of large cardinals, Mathematical Logic and Formal Systems (L.P. de Alcantara, editor), Marcel Dekker, 1985, 87–139.Google Scholar
  9. [F]
    Fodor, G., Eine bemerkung zur theorie der regressiven funktionen, Acta. Sci. Math. (Szeged), 17 (1956), 139–142.MathSciNetzbMATHGoogle Scholar
  10. [Je1]
    Jech, Thomas J., Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165–198.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Je2]
    Jech, Thomas J., Set Theory, Academic Press, 1978.Google Scholar
  12. [Jo]
    Johnson, C.A., Some partition relations for ideals on P κ λ, preprint.Google Scholar
  13. [KP]
    Kunen, Kenneth, and Pelletier, Donald H., On a combinatorial property of Menas related to the partition property for measures on supercompact cardinals, J. Sym. Logic, 48 (1983), 475–481.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Ma]
    Magidor, M., There are many normal ultrafilters corresponding to a supercompact cardinal, Israel J. Math. 9 (1971), 186–192.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Me]
    Menas, T.K., A combinatorial property of P κ λ, J. Sym. Logic, 41 (1976), 225–234.MathSciNetzbMATHGoogle Scholar
  16. [N]
    Neumer, W., Verallgemeinerung eines Satzes von Alexandroff und Urysohn, Math. Zeit., 54 (1951), 254–261.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [P]
    Pelletier, Donald H., A simple proof and generalization of Weglorz’ characterization of normality for ideals, Rocky Mountain J. Math., 11 (1981), 605–609.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [R]
    Rowbottom, F., Some strong axioms of infinity incompatible with the axiom of constructibility, Ann. Math. Logic, 3 (1971), 1–44.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [S1]
    Shelah, S., The existence of coding sets, Lecture Notes in Mathematics, no. 1182, Springer-Verlag, Berlin, 1986, 188–202.Google Scholar
  20. [S2]
    Shelah, S., More on stationary coding, Lecture Notes in Mathematics, no. 1182, Springer-Verlag, Berlin, 1986, 224–246.Google Scholar
  21. [SRK]
    Solovay, R., Reinhardt, W., and Kanamori, A., Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1977), 73–116.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [W]
    Weglorz, B., Some properties of filters, Lecture Notes in Mathematics, no. 619, Springer-Verlag, Berlin, 1977, 311–329.zbMATHGoogle Scholar
  23. [Z1]
    Zwicker, W.S., P κ λ combinatorics I, Axiomatic Set Theory, (Baumgartner, Martin, Shelah, editors) Contemporary Mathematics, vol. 31, American Mathematical Society, 1984, 243–259.Google Scholar
  24. [Z2]
    Zwicker, W.S., Lecture notes on the structural properties of ideals on P κ λ, handwritten notes, July 1984.Google Scholar
  25. [Z3]
    Zwicker, W.S., Notes for a lecture delivered to the Conference on Set Theory and its Applications at York University in August 1987.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  1. 1.Department of MathematicsState University of New York at PlattsburghPlattsburghUSA
  2. 2.Department of MathematicsYork UniversityNorth YorkCanada

Personalised recommendations