Advertisement

A characterization of CPn by its automorphism group

  • J. Bland
  • T. Duchamp
  • M. Kalka
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1268)

Keywords

Real Hypersurface Complex Line Compact Complex Manifold Holomorphic Foliation Complex Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

§ References

  1. [BM]
    L. Brenton and J. Morrow, Compactifications of C n, Trans. AMS, 246(1978), 139–153.MathSciNetzbMATHGoogle Scholar
  2. [GK]
    R. E. Greene and S. G. Krantz, Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, preprint, (1984).Google Scholar
  3. [HO]
    A. T. Huckleberry and E. Oeljeklaus, Classification theorems for almost homogeneous spaces, Institut Elie Cartan 9 no, January, 1984.Google Scholar
  4. [K]
    S. Kobayashi, On conjugate and cut loci, Studies in global geometry and analysis, S. S. Chern ed., MAA Studies in Mathematics Vol. 4, 1967.96–122Google Scholar
  5. [M]
    J. Morrow, Minimal normal compactifications of C 2, Rice University Studies 59(1973), 97–112.MathSciNetGoogle Scholar
  6. [O]
    E. Oeljeklaus, Ein Hebbarkeitssatz für Automorphismengruppen kompakter Mannigfaltigkeiten, Math. Ann. 190(1970), 154–166.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [S]
    B. Shiffman, On the removal of singularities of analytic sets, Michigan Math. Journal 15(1968), 111–120.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. Bland
    • 1
  • T. Duchamp
    • 2
  • M. Kalka
    • 3
  1. 1.University of TorontoCanada
  2. 2.University of WashingtonUSA
  3. 3.Tulane UniversityUSA

Personalised recommendations