Compactness of families of holomorphic mappings up to the boundary

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1268)


Compact Subset Finite Type Real Hypersurface Pseudoconvex Domain Bergman Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.E. Barrett, Regularity of the Bergman projection on domains with transverse symmetries, Math. Ann. 258 (1982), 441–446.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E. Bedford, Proper holomorphic mappings from domains with real analytic boundary, Amer. J. Math. 106 (1984), 745–760.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    E. Bedford, Action of the automorphisms of a smooth domain in C n, Proc. A.M.S. 93 (1985), 232–234.MathSciNetzbMATHGoogle Scholar
  4. 4.
    S. Bell, Non-vanishing of the Bergman kernel function at boundary points of certain domains in C n, Math. Ann. 244 (1979), 69–74.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. Bell, Boundary behavior of proper holomorphic mappings between non-pseudoconvex domains, Amer. J. Math. 106 (1984), 639–643.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S. Bell, Differentiability of the Bergman kernel and pseudo-local estimates, Math. Zeit., in press.Google Scholar
  7. 7.
    S. Bell and D. Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), 385–396.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. Bell and E. Ligocka, A simplicfication and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283–289.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    H. P. Boas, Extension of Kerzman's theorem on differentiability of the Bergman kernel function, to appear.Google Scholar
  10. 10.
    H. P. Boas, Counterexample to the Lu Qi-Keng conjecture, to appear.Google Scholar
  11. 11.
    H. Cartan, Sur les fonctions de plusieurs variables complexes: L'itération des transformations intérieurs d'un domaine borné, Math. Zeit. 35 (1932), 760–773.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    D. Catlin, Boundary invariants of pseudoconvex domains, Ann. Math. 120 (1984) 529–586.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D. Catlin, Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains, Ann. Math., to appear.Google Scholar
  14. 14.
    J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. Math. 115 (1982), 615–637.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R. Greene and S. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), 425–446.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149–158.MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Narasimhan, Several Complex Variables, Chicago Lectures in Mathematics, University of Chicago Press, 1971.Google Scholar
  18. 18.
    J.P. Rosay, Sur une caractérisation de la boule parmi les domaines de C n par son groupe d'automorphismes, Ann. Inst. Fourier 29 (4) (1979), 91–97.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • S. Bell
    • 1
  1. 1.Purdue UniversityW. Lafayette

Personalised recommendations