G-index of an invariant differential operator and its applications

  • Antoni Wawrzyńczyk
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 798)


Vector Bundle Dirac Operator Discrete Series Weyl Chamber Hermitian Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.F. ATIYAH: Elliptic operators, discrete groups and von Neumann algebras, Asterique 32/33 (1976), 43–72.MathSciNetzbMATHGoogle Scholar
  2. [2]
    M.F. ATIYAH, W. SCHMID: A geometric construction of the discrete series of semisimple Lie groups, Inv. Math. 42 (1977), 1–62.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. BOTT: The index theorem for homogenous differential operators, In: Differential and Combinatorial Topology (A symposium in honour of Marston Morse), 167–186, Princeton University Press, Princeton, 1965.Google Scholar
  4. [4]
    HARISH-CHANDRA: Representations of semisimple Lie groups, IV, V, VI, Amer. J. Math. 77 (1955), 743–777; 78 (1956), 1–41 and 564–628.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    HARISH-CHANDRA: Discrete series for semisimple Lie groups, II, Acta Math. 116 (1966), 1–111.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. HECHT, W. SCHMID: A proof of Blattner conjecture, Inv. Math. 31 (1975), 129–154.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R. HOTTA, R. PARTHASARATHY:Multiplicity formulae for discrete series, Inv. Math. 26 (1974), 133–178.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. PARTHASARATHY: Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1–30.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    R.S. PALAIS et al.: Seminar on the Atiyah-Singer index theorem, Ann. of Math. Studies 57, Princeton University Press, 1965.Google Scholar
  10. [10]
    W. SCHMID: Some properties of square-integrable representations of semisimple Lie groups, Ann. of Math. 102 (1975), 535–564.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    T. J. ENRIGHT, V.S. VARADARAJAN: On an infinitesimal characterization of the discrete series, Ann. of Math. 102 (1975), 1–16.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R. GOODMAN: One parameter groups generated by operators in an enveloping algebra, J. Funct. Anal. 6 (1970), 218.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Antoni Wawrzyńczyk
    • 1
  1. 1.Department of Mathematical Methods in PhysicsUniversity of WarsawWarszawaPoland

Personalised recommendations