Advertisement

Theorems on holomorphic bisectional curvature and pseudoconvexity on Kähler manifolds

  • Osamu Suzuki
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 798)

Keywords

Energy Function Length Function Complex Line Domain Pseudoconvexes Bisectional Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. BARTH: Der Abstand von einer algebraischen Manigfaltigkeit im komplexe-projektiven Raum, Math. Ann. 187 (1970), 150–162.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G. ELENOWAJG: Pseudo-convexité local dans les variétés kähleriennes, Ann. Inst. Fourier 25 (1975), 295–314.CrossRefGoogle Scholar
  3. [3]
    S.I. GOLDBERG and S. KOBAYASHI: On holomorphic bisectional curvature, J. Differential Geometry 1 (1967), 225–233.MathSciNetzbMATHGoogle Scholar
  4. [4]
    D. GROMOLL, W. KLINGENBERG, and W. MEYER: Riemannsche Geometrie im Großen, Lecture notes in Mathematics 55, 1968, Springer, Berlin-Heidelberg-New York.zbMATHGoogle Scholar
  5. [5]
    S. KOBAYASHI and K. NOMIZU: Foundations of differential geometry, I and II, Interscience Publishers, 1963 and 1969, John Wiley and Sons, New York-London.Google Scholar
  6. [6]
    J.W. MILNOR: Lectures on Morse Theory, Ann. Math. Studies No. 51, 1963, Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  7. [7]
    O. SUZUKI: Pseudoconvex domains on a kähler manifold with positiv holomorphic bisectional curvature, Publ. RIMS, Kyoto Univ. 12 (1976), 191–214.CrossRefzbMATHGoogle Scholar
  8. [8]
    —: Supplement to "Pseudoconvex domains on a kähler manifold with positive holomorphic bisectional burvature", ibid. 12 (1976), 439–445.CrossRefzbMATHGoogle Scholar
  9. [9]
    A. TAKEUCHI: Domains pseudoconvexes sur les varietés kähleriennes, J. Math. Kyoto Univ. 6 (1967), 323–357.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Osamu Suzuki
    • 1
  1. 1.Department of Mathematics College of Humanities and SciencesNihon University SetagayaTokyoJapan

Personalised recommendations