Sur les bases polynomiales semi-simples de l'espace h(k)

  • Nguyen Van Thanh
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 798)


Polynomialement Convexe Fonctions Analytiques Nous Rappelons Peut Supposer Nous Renvoyons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    LEJA F.: Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme, Ann. Soc. Pol. Math, 4 (1957).Google Scholar
  2. [2]
    MITYAGIN B.: Approximative dimension and bases in nuclear spaces, Russian Math. Surveys, 16(1961).Google Scholar
  3. [3]
    NGUYEN THANH VAN: Bases de Schauder dans certains espaces de fonctions holomorphes, Ann. Inst. Fourier, 22 (1972).Google Scholar
  4. [4]
    NGUYEN THANH VAN: Familles de polynômes ponctuellement bornées, Ann. Pol. Math., 31 (1975).Google Scholar
  5. [5]
    PLESNIAK W.: On some polynomial condition of the type of Leja in ℂn, Proceedings of the 7th. Conference on Analytic Functions (Kozubnik 1979).Google Scholar
  6. [6]
    RETHERFORD J.M. et Mc ARTHUR C.W.: Some remarks on bases in linear topological spaces, Math.Annalen, 164 (1966).Google Scholar
  7. [7]
    SICIAK J.: On some extremal functions and their application in the Theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962).Google Scholar
  8. [8]
    SICIAK J.: Extremal Plurisubharmonic Functions in Cn, Proceedings of the 1st Finnish-Polish Summer School in Complex Analysis, Univ. of Lodz 1977.Google Scholar
  9. [9]
    WALSH J.L.: Interpolation and Approximation, Amer. Math. Soc. Colloq. Publ., 3rd edition (1960).Google Scholar
  10. [10]
    ZAHARJUTA V.P.: Spaces of functions of one variable analytic in open sets and on compacta, Math. USSR Sbornik, 11 (1970).Google Scholar
  11. [11]
    ZAHARJUTA V.P.: Fonctions plurisousharmoniques extrémales, échelles hilbertiennes et isomorphismes d'espaces de fonctions analytiques de plusieurs variables complexes (en russe), Théorie des fonctions, Analyse fonctionnelle et leurs applications, 19 et 21 (1974).Google Scholar
  12. [12]
    ZAHARJUTA V.P.: Fonctions plurisousharmoniques extrémales, polynômes orthogonaux et Théorème de Bernstein — Walsh pour les fonctions analytiques de plusieurs variables complexes (en russe), Ann. Pol. Math., 33 (1976).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Nguyen Van Thanh
    • 1
  1. 1.Université Paul SabatierToulouse CedexFrance

Personalised recommendations