Some remarks on extension of biholomorphic mappings

  • Ewa Ligocka
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 798)


Pseudoconvex Domain Bergman Kernel Open Dense Subset Biholomorphic Mapping Proper Holomorphic Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BELL, S.R.: Non-vanishing of the Bergman kernel function at boundary points of certain domains in ℂn, Math.Ann. (to appear).Google Scholar
  2. [2]
    BOUTET DE MONVEL, L. et S. SJÖSTRAND: Sur la singularité des noyaux de Bergman et de Szegö, Asterique 34, 35 (1976), 123–164.zbMATHGoogle Scholar
  3. [3]
    DIEDERICH, K. and J.E. FORNAESS: Pseudoconvex domains with real-analytic boundaries, Ann. of Math. 107 (1978), 371–384.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    FEFFERMAN, C.: The Bergman kernel and bihomolomorphic mappings of pseudoconvex domains, Invent Math. 26 (1974), 1–65.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    FOLLAND, G. and J.J.KOHN: The Neumann problem for the Cauchy-Riemann complex, Ann of Math. Studies no 75, Princeton Univ. Press 1972.Google Scholar
  6. [6]
    HENKIN, G.M. and E.M.ČIRKA: Boundary properties of holomorphic function of several complex variables, Ms.Google Scholar
  7. [7]
    KOHN, J.J.: Sufficient conditions for subelliplicity on weakly pseudoconvex domains, Proc.Math.Acad.Sci. USA 74, n. 6 (1977), 2214–2216.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    LIGOCKA, E.: How to prove Feffermann's theorem without use of differential geometry, Ann.Pol.Math. (to appear).Google Scholar
  9. [9]
    MALGRANGE, B.: Ideals of differentiable functions, Oxford 1966.Google Scholar
  10. [10]
    SKWARCZYŃSKI, M.: Biholomorphic invariants related to the Bergman function, Dissertations Math. (to appear).Google Scholar
  11. [11]
    —: The ideal boundary of a domain in ℂn, Ann.Pol.Math. (to appear).Google Scholar
  12. [12]
    STEIN, E.M.: Singular integrals and differentiability properties of functions, Princeton 1970.Google Scholar
  13. [13]
    WEBSTER, S.: Biholomorphic mappings and the Bergman kernel off the diagonal, Inventiones Math. 51 (1979), 155–169.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    DIEDERICH, K. and J.E. FORNAESS: Proper holomorphic mappings onto pseudoconvex domains with real analytic boundary (to appear).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Ewa Ligocka
    • 1
  1. 1.Osiedle Przyjaźń 15 m.4Warszawa JelonkiPoland

Personalised recommendations