Analytic representation for cr-functions on submanifolds of codimension 2 in ¢n

  • Gennadi Markovič Henkin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 798)


Analytic Representation Negative Eigenvalue Pseudoconvex Domain Levi Form Arbitrary Codimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ANDREOTTI, A. and C. DENSON-HILL: E. E. Levi convexity and the Hans Lewy problem, Ann. Scuola Norm. Sup. Pisa 26 (1972), 325–363.MathSciNetzbMATHGoogle Scholar
  2. [2]
    —, —, S. ŁOJASIEWICZ, and B. MACKICHAN: Complexes of differential operators, Invent. Math. 35 (1976), 43–86.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    FISCHER, W. und I. LIEB: Lokale Kerne und beschränkte Lösungen für den ∂-Operator auf q-konvexen Gebieten, Math. Ann. 208 (1974), 249–265.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    HÖRMANDER, L.: L2-estimates and existence theorems for the ∂-operator, Acta Math. 113 (1965), 89–152.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    HUNT, L. R., J. C. POLKING, and J. STRAUSS: Unique continuation for solutions to the induced Cauchy-Riemann equations, J. Diff. Equations 23 (1977), 436–447.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    KASHIWARA, M. and T. KAWAI: On the boundary value problem for elliptic systems of linear differential equations, Proc. Japan Acad. 48 (1972), 712–715.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    MARTINEAU, A.: Distributions et valeurs au bord des fonctions holomorphes, Proc. of the Internat. Summer Institute, Lisbon 1964.Google Scholar
  8. [8]
    NIRENBERG, R.: On the H. Lewy extension phenomenon, Trans. Amer. Math. Soc. 168 (1972), 337–356.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    NORGUET, F.: Problèmes sur les formes différentielles des courants, Ann. Inst. Fourier 11 (1960), 1–88.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    POLKING, J. C. and R. O. WELLS: Hyperfunction boundary values and a generalized Bochner-Hartogs theorem, Proc. Symp. Pure Math. 30 (1977), 187–193.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    RANGE, R. M. and Y. T. SIU: Uniform estimates for the ∂-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1974), 325–354.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    — and —: Ck-approximation by holomorphic functions and ∂-closed forms on Ck-submanifolds of a complex manifold, Math. Ann. 210 (1974), 105–122.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    SATO, M., T. KAWAI, and M. KASHIWARA: Microfunctions and pseudo-differential equations, Springer-Verlag, Berlin-Heidelberg-New York 1973.zbMATHGoogle Scholar
  14. [14]
    TILLMANN, H. G.: Randverteilungen analytischer Funktionen und Distributionen, Math. Z. 59 (1953), 61–83.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    WELLS, R. O.: Function theory on differentiable submanifolds, in: Contributions to Analysis, Academic Press, New York 1974, pp. 407–441.CrossRefGoogle Scholar
  16. [16]
    POLJAKOV, P. L.: Banach cohomology on piecewise strictly pseudoconvex domains [in Russian], Mat. Sb. (N. S.) 88 (130) (1972), 239–255.MathSciNetGoogle Scholar
  17. [17]
    HENKIN, G. M.: Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications [in Russian], Mat. Sb. (N. S.) 78 (120) (1969), 611–632.MathSciNetGoogle Scholar
  18. [18]
    —: A uniform estimate for the solution of the ∂-problem in a Weil region [in Russian], Uspehi Mat. Nauk 26 (1971), no. 3 (159), 211–212.MathSciNetzbMATHGoogle Scholar
  19. [19]
    ČIRKA, E. M.: Analytic representations of CR-functions [in Russian], Mat. Sb. (N. S.) 98 (140) (1975), 591–623 and 640.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Gennadi Markovič Henkin
    • 1
  1. 1.Uенмрапьныu экономuко-мамемамuu ескu uнсмuмум Акаgемuu наук СССР уМоскьаRussia

Personalised recommendations