Examples of harmonic and holomorphic maps

  • James Eells
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 798)


Riemann Surface Minimal Surface Meromorphic Function Fundamental Form Compact Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DELAUNAY, C.: Sur la surface de révolution dont la courbure moyenne est constante. J.Math. pures et appl. Sér. 1(6) (1841), 309–320; with a note appended by M.STURM.Google Scholar
  2. [2]
    EELLS,J.: Harmonic maps of surfaces, Proc. Eighth Annual National Mathematics Conference, Tehran. Bull. Iranian Math. Soc. (1978).Google Scholar
  3. [3]
    —: On the surfaces of Delaunay and their Gauss maps, Fourth Coloq. Inter. Geo. Dif. (In honour of Professor E.Vidal), Santiago de Compostela.Google Scholar
  4. [4]
    — and L. LEMAIRE: A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1–68.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    — and —: On the construction of harmonic and holomorphic maps between surfaces, to appear.Google Scholar
  6. [6]
    — and J.H. SAMPSON: Harmonic mapping of Riemannian manifolds, Ann. J. Math. 86 (1964), 109–160.MathSciNetzbMATHGoogle Scholar
  7. [7]
    — and J.C. WOOD: Restrictions on harmonic maps of surfaces, Topology 15 (1976), 263–266.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    KENMOTSU, K.: Weierstrass formula for surfaces of prescribed mean curvature, to appear.Google Scholar
  9. [9]
    MEEKS, W.H.: The conformal structure and geometry of triply periodic minimal surfaces in ℝ3, Bull. Am. Math. Soc. 83 (1977), 134–6.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    NAGANO, T. and B. SMYTH: Sur les surfaces minimales hyperelliptique dans un tore, C.R. Paris A280 (1975), 1527–1529.MathSciNetzbMATHGoogle Scholar
  11. [11]
    — and —: Periodic minimal sufaces, Comm. Math. Helv. (1978).Google Scholar
  12. [12]
    RUH, E.A. and J. VILMS:, The tension field of the Gauss map. Trans. Am. Math. Soc. 149 (1970), 509–513.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    SMITH, R.T.: Harmonic mapping of spheres, Warwick Thesis (1972).Google Scholar
  14. [14]
    THOMPSON, D'A.W.: Growth and Form, Cambridge (1917).Google Scholar
  15. [15]
    VILMS, J.: Submanifolds of Euclidean space with parallel second fundamental form, Proc. Ann. Math. Soc. 32 (1972), 263–267.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • James Eells
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations