p-Capacity and conformal capacity in infinite dimensional spaces

  • Petru Caraman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 798)


Measure Space Admissible Function Preceding Lemma Infinite Dimensional Space Preceding Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ARONSZAJN, N.: Differentiability of Lipschitzian mappings, Studia Math. 57 (1976) 147–190.MathSciNetzbMATHGoogle Scholar
  2. [2]
    BALAKRISHNAN, A.V.: Introduction to optimization theory in a Hilbert spce (Lecture Notes in Operations Research and Math. Systems 42), Springer-Vellag, Berlin-Heidelberg-New York 1971, 154 pp.CrossRefGoogle Scholar
  3. [3]
    BARBU, V. and PRECUPANU,T. Convexity and optimization in Banach spaces, Edit. Acad. Bucureşti România and Sijthoff & Noordhoff, International Publishers 1978, 316 pp.Google Scholar
  4. [4]
    FUGLEDE, B.: Extremal lengh and functional completion, Acta Math. 98 (1957), 171–219.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    GROSS, L.: Potential theory in Hilbert space, J. Functional Anal. 1 (1967), 123–181.CrossRefzbMATHGoogle Scholar
  6. [6]
    —: Abstract Wiener measure and infinite dimensional potential theory, in Lecture Notes in Modern Analysis and Applications II by J. Glinn, L. Gross, Harish-Chandra, R.V. Kadison, D. Ruella, I. Segal (Lecture Notes in Math. 140), Springer-Verlag, Berlin-Heidelberg-New York 1970 pp. 84–116.Google Scholar
  7. [7]
    HEWITT, E. and STROMBERG, K.: Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, Berlin-Heidelberg-New York 1965, 476 pp.zbMATHGoogle Scholar
  8. [8]
    KUO, HUI HSIUNG: Gaussian measures in Banach spaces (Lecture Notes in Math. 463) Springer-Verlag, Berlin-Heidelberg-New York 1975, 224 pp.zbMATHGoogle Scholar
  9. [9]
    YOSIDA, K.: Functional analysis, 3. ed., Springer-Verlag, Berlin-Heidelberg-New York 1971, 475 pp.CrossRefzbMATHGoogle Scholar
  10. [10]
    ZIEMER, P. W.: Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43–51.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Petru Caraman
    • 1
  1. 1.Institute of MathematicsUniversity "Al. I. Cuza"IaşiRomania

Personalised recommendations